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Abstract. Fine particulate matter with a diameter of less
than 2.5 µm (PM2.5) has been used as an important atmo-
spheric environmental parameter mainly because of its im-
pact on human health. PM2.5 is affected by both natural
and anthropogenic factors that usually have strong diur-
nal variations. Such information helps toward understanding
the causes of air pollution, as well as our adaptation to it.
Most existing PM2.5 products have been derived from polar-
orbiting satellites. This study exploits the use of the next-
generation geostationary meteorological satellite Himawari-
8/AHI (Advanced Himawari Imager) to document the diur-
nal variation in PM2.5. Given the huge volume of satellite
data, based on the idea of gradient boosting, a highly ef-
ficient tree-based Light Gradient Boosting Machine (Light-
GBM) method by involving the spatiotemporal character-
istics of air pollution, namely the space-time LightGBM
(STLG) model, is developed. An hourly PM2.5 dataset for
China (i.e., ChinaHighPM2.5) at a 5 km spatial resolution
is derived based on Himawari-8/AHI aerosol products with
additional environmental variables. Hourly PM2.5 estimates
(number of data samples= 1 415 188) are well correlated
with ground measurements in China (cross-validation coef-
ficient of determination, CV-R2

= 0.85), with a root-mean-
square error (RMSE) and mean absolute error (MAE) of
13.62 and 8.49 µg m−3, respectively. Our model captures

well the PM2.5 diurnal variations showing that pollution in-
creases gradually in the morning, reaching a peak at about
10:00 LT (GMT+8), then decreases steadily until sunset. The
proposed approach outperforms most traditional statistical
regression and tree-based machine-learning models with a
much lower computational burden in terms of speed and
memory, making it most suitable for routine pollution moni-
toring.

1 Introduction

China has faced severe environmental problems during the
last 2 decades, especially air pollution (An et al., 2019; Chan
and Yao, 2008; Z. Li et al., 2017; Q. Zhang et al., 2019;
Wei et al., 2021a). The sources of air pollution are numer-
ous, coming from both natural changes (e.g., forest fires,
biomass burning) and human activities (e.g., industrial pro-
duction, transportation) (Huang et al., 2014; Sun et al., 2004;
Wei et al., 2019a, b, 2021b). Particulate matter with a di-
ameter of less than 2.5 µm (PM2.5) has a greater impact on
the atmospheric environment and climate change than other
air pollutants (e.g., PM10, nitrogen dioxide, NO2, and sulfur
dioxide, SO2) (Jacob and Winner, 2009; Z. Li et al., 2017,
2019; Ramanathan and Feng, 2009). Moreover, they can
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cause great harm to human health due to their smaller par-
ticle size (Delfino et al., 2005; Kampa and Castanas, 2008;
Kim et al., 2015; Lelieveld et al., 2015). China has estab-
lished and operates multiple ground-based observation net-
works to monitor air pollution in real time across mainland
China, including information about PM2.5 pollution.

For near-surface concentrations, the networks provide
high-quality PM2.5 measurements every hour (even every
few minutes) but with non-uniform coverage. In recent years,
an increased effort has been made in estimating PM2.5
with products generated from multiple instruments on sun-
synchronous satellites, e.g., the Multi-angle Imaging Spec-
troRadiometer (MISR) (Liu et al., 2005; van Donkelaar et al.,
2006), the Moderate Resolution Imaging Spectroradiometer
(MODIS) (Liu et al., 2007; Ma et al., 2014; Wei et al., 2019a,
2020, 2021a), and the Visible Infrared Imaging Radiometer
Suite (VIIRS) (Wei et al., 2021c; Wu et al., 2016; Yao et
al., 2019). However, due to their low revisit cycles (one or
two overpasses per day), they are unable to monitor the di-
urnal variation in pollution. Currently, most available PM2.5
datasets are at low temporal resolutions that cannot meet the
requirements of air pollution real-time monitoring (Lennart-
son et al., 2018). For example, knowing when heavy pollu-
tion might occur during the day, people may adjust their time
outdoors doing activities accordingly. Following the launch
of the Himawari-8 Advanced Himawari Imager (Himawari-
8/AHI) on 7 October 2014 (Bessho et al., 2016; Letu et
al., 2020), near-surface PM2.5 concentrations in the Eastern
Hemisphere can now be estimated and used to examine their
diurnal cycle.

Wang et al. (2017) used the linear mixed-effect (LME)
model, and Sun et al. (2019) applied the geographically
weighted regression (GWR) and support vector regres-
sion (SVR) models to estimate hourly PM2.5 concentra-
tions in the Beijing–Tianjin–Hebei (BTH) region from the
Himawari-8 aerosol optical depth (AOD) product. T. Zhang
et al. (2019) developed an improved LME model, and Xue et
al. (2020) proposed an improved geographically and tempo-
rally weighted regression (IGTWR) model to derive hourly
PM2.5 maps based on the Himawari-8 AOD product over
central and eastern China. In addition to traditional statis-
tical regression models, several artificial intelligence mod-
els, including the random forest (RF), the gradient boost-
ing decision tree (GBDT), the eXtreme Gradient Boosting
(XGBoost), and the deep neural network (DNN), have been
recently successfully adopted to obtain ground-level PM2.5
concentrations in local regions and in the whole of China
(Chen et al., 2019; Gui et al., 2020; Liu et al., 2019; Sun et
al., 2019; Zhang et al., 2020). Nevertheless, due to their poor
data-mining ability, traditional statistical regression methods
usually suffer from large uncertainties. While artificial intel-
ligence methods can achieve high accuracies, they are often
highly demanding on computational power and are thus often
slow. Therefore, spatiotemporal variations in PM2.5 have of-
ten been neglected in the models developed in previous stud-

ies (Chen et al., 2019; Liu et al., 2019; Sun et al., 2019; Wang
et al., 2017; T. Zhang et al., 2019), resulting in relatively low
accuracies.

Focusing on the above issues, we have developed a new,
highly efficient, and precise method for improving ground-
level PM2.5 estimates by incorporating spatial and tempo-
ral information into the tree-based Light Gradient Boosting
Machine (LightGBM) model. This new model is called the
space-time LightGBM (STLG) model, and it has been used
to generate a high-quality, high-temporal-resolution (hourly)
PM2.5 dataset over eastern China (at a spatial resolution of
5 km) from the Himawari-8/AHI hourly AOD product. Sec-
tion 2 provides details about the data used and introduces
the development of the STLG model. Section 3 validates the
hourly PM2.5 estimates and shows the diurnal PM2.5 varia-
tions across China. Comparisons with results from traditional
models and from previous studies are also presented. Sec-
tion 4 summarizes the study.

2 Materials and methods

2.1 Data sources

2.1.1 PM2.5 and AOD data

PM2.5 hourly measurements from 1583 monitoring stations
across China for the year 2018 were collected (Fig. 1 in Wei
et al., 2020). The latest Himawari-8 version 2 hourly 5 km
AODs at 500 nm across mainland China for that year were
also collected. This AOD product is synthesized from level 2
10 min AODs generated by a newly developed Lambertian-
surface-assumed aerosol retrieval algorithm (Letu et al.,
2020; Yoshida et al., 2018). Himawari-8 AOD retrievals have
been preliminarily evaluated against in situ AOD retrievals
provided by the Aerosol Robotic Network (Giles et al., 2019)
and the Sun–Sky Radiometer Observation Network (Li et
al., 2018), showing that they are consistent (R= 0.75), with
a root-mean-square error (RMSE) and mean absolute error
(MAE) of 0.39 and 0.21, respectively (Wei et al., 2019c).
Here, only low-uncertainty AOD retrievals (500 nm) were se-
lected for estimating PM2.5 concentrations.

2.1.2 Meteorological conditions

PM2.5 can be significantly affected by meteorological con-
ditions (Su et al., 2018). However, most currently avail-
able reanalysis meteorological products have low tempo-
ral resolutions (∼ 3–6 h). Recently (14 June 2018), the
fifth-generation European Centre for Medium-range Weather
Forecasts (ECMWF) global atmospheric reanalysis (ERA5)
at a horizontal resolution of 0.25◦× 0.25◦ has been released,
as well as the land version (12 July 2019) at a horizontal reso-
lution of 0.1◦× 0.1◦, both at an hourly timescale (1979 to the
present). Here, we use seven ERA5 hourly meteorological
parameters, i.e., the 2 m temperature (TEM), total evapora-
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tion (ET), relative humidity (RH), 10 m u- and v-components
of wind, surface pressure (SP), and boundary-layer height
(BLH).

2.1.3 Human influences

Human activity is a key factor affecting PM2.5 pollution. The
global annual LandScan™ product at a 1 km spatial reso-
lution for the year 2018 was selected to obtain the popula-
tion distribution (POP) (Dobson et al., 2000). Monthly an-
thropogenic source emission data from the Multi-resolution
Emission Inventory for China (MEIC) (M. Li et al., 2017;
Zheng et al., 2018) were also employed. This dataset is gen-
erated from agricultural, industrial, power, residential, and
transportation information obtained at more than 700 anthro-
pogenic sources, including a total of 10 atmospheric pollu-
tants and greenhouse gases. Here, four main precursors were
selected, i.e., ammonia (NH3), nitrogen oxides (NOx), SO2,
and volatile organic compounds (VOCs), and direct emis-
sions to PM.

2.1.4 Ancillary data

Two additional ancillary datasets, namely, the MODIS
monthly normalized difference vegetation index (NDVI) at a
horizontal resolution of 0.05◦× 0.05◦ and the Shuttle Radar
Topography Mission (SRTM) 90 m digital elevation model
(DEM) products, were selected to characterize land cover, its
change, and topographical conditions in China. All selected
variables (Table 1) with potential impacts on PM2.5 concen-
trations were resampled to the same spatial resolution as the
Himawari-8 aerosol product, namely, 0.05◦× 0.05◦.

2.2 Space-time LightGBM model

2.2.1 LightGBM model

The LightGBM model, a newly developed tree-based
machine-learning approach, was introduced in 2017 (Ke et
al., 2017). Using the gradient boosting framework to con-
struct the decision tree, this approach can tackle both regres-
sion and classification tasks and as such can be expanded for
PM applications. It can also tackle the main challenge faced
in traditional machine-learning approaches, namely, compu-
tational complexities, which are very time-consuming. Light-
GBM is a fast, distributed, and highly efficient method that
reduces the number of data samples (M) and features (N ).
The LightGBM model includes three main steps when con-
structing the decision tree.

1. Histogram-based algorithm. Continuous features are
first converted to different bins which are used to con-
struct feature index histograms without the need to sort
during training. It goes through all the data bins to find
the best split point from the feature histograms, which
can significantly reduce the computation cost of the split
gain. The overall complexity is O (M ×N).

2. Gradient-based one-side sampling. Data samples are
first sorted in descending order according to their ab-
solute gradients, and the top a% of them are selected as
a subset sample with large gradients. The b% samples
are then randomly chosen from the remaining data as a
subset sample with small gradients. The sampled data
with small gradients are multiplied by a weight coeffi-
cient

(
1−a
b

)
. Consequently, a new classifier is learned

and established using the above-sampled data until con-
vergence.

3. Exclusive feature bundling. A graph with weighted
edges is first constructed, and each weight corresponds
to the total number of conflicts between two features.
The features are then sorted in descending order accord-
ing to the degree of each feature (the greater the degree,
the greater the conflict with other points). Last, each fea-
ture is checked in the sorted sequence, and it is assigned
to a combination with small conflicts or a new combi-
nation is created.

In addition to the main technologies mentioned above,
there are other features of the optimization, such as the leaf-
wise tree growth strategy with depth restriction (Shi, 2007),
histogram difference acceleration, sequential access gradi-
ent, and the support of category feature and parallel learning.
These advanced methodologies make it possible to reach a
high accuracy and efficiency (Ke et al., 2017).

2.2.2 Model development

It is well known that air pollution has spatiotemporal hetero-
geneity leading to large differences in PM2.5 concentrations
in both time and space. Such characteristics have always been
ignored in most traditional statistical regression and artificial
intelligence methods. Studies have shown that including spa-
tiotemporal information has led to improved PM2.5 estimates
using remote sensing techniques (Z. Li et al., 2017; Wei et al.,
2019a, 2020). Therefore, we have introduced a new approach
to integrating spatiotemporal information into the LightGBM
model. The new model developed here is called the STLG
model. The spatial feature is represented by the geographical
distances of one pixel to other points in the circumscribed
rectangle of the study region (Baez-Villanueva et al., 2020;
Behrens et al., 2018). The distance is calculated using the
haversine method (Eq. 1) to reflect the spherical distance be-
tween two points in the sphere space (Wei et al., 2021a). The
temporal feature is represented by the day of the year (DOY),
which is used to distinguish each data record on different
days of the year during the model training.

DIS= 2 · r

·asin

(√
sin2

(
ϕ2−ϕ1

2

)
+ cos(ϕ1)cos(ϕ2)sin2

(
γ2− γ1

2

))
, (1)
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Table 1. Summary of datasets and sources used in this study. CNEMC is the China National Environmental Monitoring Center.

Dataset Variable Content Unit Spatial resolution Temporal resolution Data source

PM2.5 PM2.5 PM2.5 µgm−3 In situ Hourly CNEMC

AOD AOD Himawari-8 AOD – 5 km× 5 km Hourly Himawari-8

Meteorology ET Total evaporation mm 0.1◦× 0.1◦ Hourly ERA5
SP Surface pressure hPa 0.1◦× 0.1◦

TEM 2 m temperature K 0.1◦× 0.1◦

WU 10 m u-component of wind ms−1 0.1◦× 0.1◦

WV 10 m v-component of wind ms−1 0.1◦× 0.1◦

BLH Boundary-layer height m 0.25◦× 0.25◦

RH Relative humidity % 0.25◦× 0.25◦

Emissions NH3 Ammonia Mggrid−1 0.25◦× 0.25◦ Monthly MEIC
NOx Nitrogen oxides Mggrid−1

SO2 Sulfur dioxide Mggrid−1

VOC Volatile organic compounds Mggrid−1

PM PM, coarse Mggrid−1

Land cover NDVI NDVI – 0.05◦× 0.05◦ Monthly MOD13C2

Topography DEM Surface elevation m 90 m× 90 m – SRTM

Population POP Ambient population – 1 km× 1 km Yearly LandScan™

where ϕ and γ represent the latitude and longitude of a point
on the sphere, respectively, and r denotes Earth’s mean ra-
dius (≈ 6371 km). Figure 1 illustrates the flowchart of the
new STLG model.

In addition to Himawari-8 AODs, other auxiliary variables
were considered and employed to improve PM2.5–AOD rela-
tionships. However, to avoid redundant information, we first
calculated the normalized importance (%) of each feature to
the PM2.5 estimation during the model training (Fig. 2). It
represents the total gains of splits that use the feature dur-
ing the decision-tree construction but not the physical contri-
bution. AOD is found to be the most important feature, ac-
counting for about 17 %. All meteorological factors have an
important impact on the PM2.5 estimation, especially BLH,
RH, and TEM (importance > 8 %), followed by two surface-
related variables (i.e., NDVI and DEM) and POP. The influ-
ence of aerosol precursors and emissions (i.e., NH3, NOx,
SO2, PM, and VOC) on the PM2.5 estimation cannot be ig-
nored (importance > 2 %). Therefore, all 16 selected vari-
ables are included to establish the final model in this study.

Here, two independent 10-fold cross-validation methods
(10-CV) (Rodriguez et al., 2010) based on all the data sam-
ples (i.e., out-of-sample) and PM2.5 monitoring stations (i.e.,
out-of-station) were selected to validate the model perfor-
mance and the spatial prediction ability, respectively.

3 Results and discussion

3.1 Model fitting and validation

3.1.1 Spatial-scale performance

The STLG model can largely minimize overfitting, showing
a strong data-mining ability (Fig. 3) which can more accu-
rately establish the relationships between hourly PM2.5 ob-
servations and influential variables (i.e., coefficient of deter-
mination, R2

= 0.97–0.98, RMSE= 4.18–7.31 µgm−3). Fig-
ure 4 illustrates the out-of-sample evaluation results of es-
timated hourly PM2.5 values over China from 08:00 to
17:00 LT in 2018. The STLG model is highly accurate in esti-
mating hourly PM2.5 concentrations, with high sample-based
CV-R2 values ranging from 0.81 to 0.85, strong slopes of
∼ 0.81–0.84, and small y-intercepts of ∼ 5.52–7.84 µgm−3.
The uncertainties are overall small, with RMSEs (MAEs)
ranging from 11.24 (6.82) µgm−3 to 15.56 (9.79) µgm−3.
However, the STLG performs slightly differently with small
differences in main evaluation indicators throughout the day.
The main reason being that the number of training samples
is reduced during sunrise (Fig. 4a and b) and sunset (Fig. 4i
and j) in optical remote sensing, affecting the model train-
ing. Air pollution also has clear diurnal variations at different
PM2.5 pollution levels due to the different intensities of hu-
man activities and natural conditions. In general, our model
is stable and robust, with an equal out-of-sample CV-R2 of
0.85 and an equal regression slope of 0.81 at most hours dur-
ing the day in China (Fig. 4c–h).
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Figure 1. Schematics of the space-time LightGBM (STLG) model developed in this study (upper panel) and the framework of the original
LightGBM model (bottom panel).

Figure 2. Sorted normalized importance (%) of each feature in the
PM2.5 estimation during the model construction.

Furthermore, out-of-station CV-R2 values range from
0.76 to 0.81, and RMSE (MAE) values range from 12.49
(7.85) µgm−3 to 17.61 (11.33) µgm−3 (Fig. 5), indicating
that our model has a strong spatial prediction ability and can
predict PM2.5 values well in those areas without surface ob-

servations.. The station-based accuracy is also slightly de-
creased with reference to the sample-based accuracy, fur-
ther illustrating the robustness of our model. However, two
cross-validation results (e.g., slopes= 0.78–0.84) indicate
that hourly PM2.5 concentrations are overall underestimated
(Figs. 4–5), a common issue in fine-particle remote sensing
(Wei et al., 2020). This can be explained by the large aerosol
retrieval uncertainty, as well as the small number of data sam-
ples under highly polluted conditions (Wei et al., 2019c, d).

The regional performance of the STLG model for hourly
PM2.5 estimates (Fig. 6) was also evaluated. Hourly PM2.5
estimates (number of data samples, N = 1 151 595) are
highly consistent with ground measurements, with a high
sample-based CV-R2 of 0.87 and a strong regression
slope of 0.86, showing small estimation uncertainties (i.e.,
RMSE= 12.77 µgm−3, MAE= 8.12 µgm−3) over eastern
China. The STLG model performs well (e.g., CV-R2

= 0.88,
slope= 0.87) in two typical urban agglomerations of pub-
lic concern in China, i.e., the Beijing–Tianjin–Hebei (BTH)
(Fig. 6b) and Yangtze River Delta (YRD) (Fig. 6c) regions.
By contrast, our model performs relatively poorly in the Pearl
River Delta (PRD) region (Fig. 6d) possibly due to the sig-
nificant reduction in the number of data samples caused by
frequent, long-term cloud cover in southern China. Note that
there are some differences in the uncertainty of hourly PM2.5
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Figure 3. Density scatterplots of model-fitted PM2.5 estimates (µgm−3) at (a) 08:00 LT, (b) 09:00 LT, (c) 10:00 LT, (d) 11:00 LT, (e) 12:00 LT,
(f) 13:00 LT, (g) 14:00 LT, (h) 15:00 LT, (i) 16:00 LT, and (j) 17:00 LT in 2018 in China. Dashed lines denote 1 : 1 lines, and solid lines denote
best-fit lines from linear regression.

Figure 4. Density scatterplots of out-of-sample cross-validation results of PM2.5 estimates (µgm−3) at (a) 08:00 LT, (b) 09:00 LT,
(c) 10:00 LT, (d) 11:00 LT, (e) 12:00 LT, (f) 13:00 LT, (g) 14:00 LT, (h) 15:00 LT, (i) 16:00 LT, and (j) 17:00 LT in 2018 in China. Dashed
lines denote 1 : 1 lines, and solid lines denote best-fit lines from linear regression.
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Figure 5. Density scatterplots of out-of-station cross-validation results of PM2.5 estimates (µgm−3) at (a) 08:00 LT, (b) 09:00 LT,
(c) 10:00 LT, (d) 11:00 LT, (e) 12:00 LT, (f) 13:00 LT, (g) 14:00 LT, (h) 15:00 LT, (i) 16:00 LT, and (j) 17:00 LT in 2018 in China. Dashed and
solid lines denote 1 : 1 and best-fit lines from linear regression, respectively.

estimates mainly because of varying levels of air pollution.
The pollution level in the BTH region is about 3 times higher
than that in the PRD region.

Figure 7 shows the accuracy of the STLG model at
each monitoring station across China. At the individual
site scale, the number of data samples gradually decreases
from northern China to southern China mainly due to in-
creasing cloud contamination with a site average of 997
data samples in China. Except for several scattered mon-
itoring stations in western China, the STLG model has
a high performance and adaptability and can estimate
well hourly PM2.5 concentrations at most monitoring sta-
tions (e.g., average CV-R2

= 0.78, RMSE= 12.21 µgm−3,
and MAE= 8.17 µgm−3). In general, approximately 76 %,
79 %, and 82 % of monitoring stations show high accu-
racy, with out-of-sample CV-R2 values > 0.7, RMSE val-
ues < 15 µgm−3, and MAE values < 10 µgm−3 in hourly
PM2.5 estimates, especially for those located in central and
northern China.

3.1.2 Temporal-scale performance

We first quantified the time series of the bias in hourly PM2.5
estimates during the day in China (Fig. 8). There is a slight
temporal dependence in that the PM2.5 bias increases gradu-
ally with increasing standard deviation, reaching a maximum
around 11:00 LT and subsequently decreasing. This seems to
be closely related to the diurnal variation in PM2.5 concen-

Figure 6. Density scatterplots of out-of-sample cross-validation re-
sults of hourly PM2.5 estimates (µgm−3) in 2018 for (a) eastern
China, (b) the Beijing–Tianjin–Hebei (BTH) region, (c) the Yangtze
River Delta (YRD), and (d) the Pearl River Delta (PRD) in China.

trations. The PM2.5 estimates are less affected by the time-
dependent bias in the Himawari-8 AOD product (Wei et al.,

https://doi.org/10.5194/acp-21-7863-2021 Atmos. Chem. Phys., 21, 7863–7880, 2021
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Figure 7. Individual-site-scale validation of hourly PM2.5 estimates (µgm−3) in 2018 in China in terms of (a) the sample size (N), (b) CV-R2,
(c) RMSE, and (d) MAE.

2019c) because machine learning is not sensitive to the sys-
tematic bias of aerosol retrievals (Wei et al., 2021c). Nev-
ertheless, our model is generally robust and can accurately
estimate PM2.5 concentrations with small mean (median) bi-
ases of 0.05–0.08 (0.63–0.99) µgm−3 during different hours
throughout the day.

We also compared Himawari-8-derived and ground-based
PM2.5 diurnal variations from all available monitoring sta-
tions in China and three typical urban clusters (Fig. 9).
Hourly PM2.5 concentrations observed by satellite are highly
consistent with ground-based measurements, with a small
difference within ± 0.10, 0.11, 0.13, and 0.11 µg m−3 in
China and in each region. Moreover, the same diurnal vari-
ations in PM2.5 pollution are seen during the day; i.e., they
reach their maximum values at 10:00 or 11:00 LT and are
lower at sunrise and sunset. These results illustrate that the
diurnal PM2.5 variations derived from Himawari-8 are rea-
sonable compared to ground-based measurements.

We investigated the time series of the daily performance
of the STLG model in estimating hourly PM2.5 concentra-
tions in China. The number of data samples varies on a
daily basis, with an average of 3975 d−1 and with more
than 83 % of all days having more than 2000 (Fig. 10). The
large gap in the number of data samples is mainly caused

Figure 8. Boxplots of the temporal dependence of the bias in hourly
PM2.5 estimates (µgm−3) in 2018 in China. In each box, the red dot
represents the mean bias, and the middle, lower, and upper horizon-
tal blue lines represent the median bias, 25th percentile, and 75th
percentile, respectively.

by different degrees of cloud contamination in the satellite
aerosol products for different days. The STLG model cap-
tures well the hourly PM2.5 values on most days, with an
average out-of-sample R2 of 0.73 and average RMSE and
MAE values of 13.06 and 8.53 µgm−3, respectively. In gen-
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Figure 9. Time series of Himawari-8-derived (blue bars) and ground-based (orange bars) PM2.5 diurnal variations (µgm−3) in (a) China,
(b) the Beijing–Tianjin–Hebei (BTH) region, (c) the Yangtze River Delta (YRD), and (d) the Pearl River Delta (PRD).

Figure 10. Time series of out-of-sample cross validation of hourly PM2.5 estimates (µgm−3) in terms of (a) the sample size (N , red) and
CV-R2 (blue) and (b) RMSE (red) and MAE (blue) in 2018 in China.

eral, hourly PM2.5 estimates are more reliable on approxi-
mately 79 % (CV-R2> 0.7), 70 % (RMSE< 15 µgm−3), and
74 % (MAE< 10 µgm−3) of the days in the year. The model
performance also varies greatly at the seasonal level, with
average CV-R2 values of 0.82, 0.71, 0.87, and 0.86 and aver-
age RMSE values of 14.55, 9.63, 11.83, and 17.57 µgm−3 in
spring, summer, autumn, and winter, respectively (Fig. 11).

In general, the overall uncertainty of PM2.5 estimates in-
creases at the beginning and at the end of the year likely
due to the harsher environmental conditions (e.g., low hu-
midity and less precipitation) and more intense human ac-
tivities (e.g., coal heating and straw burning) in winter and
spring.
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Figure 11. Density scatterplots of out-of-sample cross-validation
results of hourly PM2.5 estimates (µgm−3) for (a) spring, (b) sum-
mer, (c) autumn, and (d) winter of 2018 in China. Dashed and solid
lines denote 1 : 1 and best-fit lines from linear regression, respec-
tively.

We have evaluated temporally synthesized PM2.5 data
from the hourly data samples at each monitoring station for
the year 2018 (Fig. 12). Daily mean PM2.5 estimates are
highly correlated to those calculated from surface observa-
tions (R2

= 0.91), and the average RMSE (MAE) value is
10.11 (6.39) µgm−3. This suggests that the STLG model
can capture daily PM2.5 variations more accurately. Note that
daily synthetic PM2.5 data derived from geostationary satel-
lites have a higher temporal frequency than data derived from
sun-synchronous satellites. In general, PM2.5 synthetic val-
ues also have high accuracies and low estimation uncertain-
ties (e.g., R2

= 0.98, RMSE= 1.6–3.3 µgm−3, MAE= 1.1–
2.3 µgm−3) from monthly to annual scales, allowing for a
better description of spatiotemporal distributions and varia-
tions in PM2.5 pollution across China.

3.2 Spatiotemporal characteristics

3.2.1 Diurnal variations

Figure 13 shows Himawari-8-derived hourly mean near-
surface PM2.5 concentrations from 08:00 to 17:00 LT in 2018
across mainland China. They do not cover western Xinjiang
and Tibet due to the limitation of satellite scanning. PM2.5
pollution varies diurnally across China, being at an overall
low level at sunrise (∼ 29.94± 10.91 µgm−3). With the in-
crease in human activities, air pollution becomes more se-
vere over time, reaching a peak at around 10:00–11:00 LT
in China (∼ 36± 13 µgm−3). These high levels of pollution

Figure 12. Density scatterplots of out-of-sample cross-validation
results of (a) daily, (b) monthly, (c) seasonal, and (d) annual mean
PM2.5 estimates (µgm−3) in 2018 across China.

can last several hours. As the day progresses, human activi-
ties subside, and atmospheric fine particles settle on surfaces.
PM2.5 concentrations thus decrease towards sunset in most
areas in China (∼ 23.21± 9.73 µgm−3). In general, air pol-
lution in the morning (i.e., 08:00–12:00 LT) is much more
severe than in the afternoon (i.e., 13:00–17:00 LT) in China,
with morning PM2.5 concentrations about 1.3 times higher
than afternoon levels. This is related to the influence of vary-
ing BLHs (Z. Li et al., 2017; Su et al., 2018).

Table 2 summarizes the diurnal PM2.5 variations in eastern
China and three typical urban agglomerations. PM2.5 pollu-
tion levels in eastern China are generally higher than the na-
tional level at each hour of the day due to the dense human
population and intensive human activities. In the BTH re-
gion, PM2.5 pollution varies greatly, with hourly PM2.5 con-
centrations ranging from 28.88± 10.16 µgm−3 (10:00 LT)
to 49.31± 15.03 µgm−3 (16:00 LT) and with differences ex-
ceeding 20 µgm−3. PM2.5 pollution remained at a high level
(> 42 µgm−3) before 12:00 LT and dropped to a lower level
(< 29 µgm−3) after 16:00 LT. This is closely related to peo-
ple’s daily activities and the production and life cycle of
PM2.5 during the day, as well as the change in boundary mix-
ing as a function of the day (Lennartson et al., 2018; Wang
and Christopher, 2003). Similar patterns and PM2.5 pollution
levels are seen in the YRD region. In general, the PRD re-
gion is less polluted in the morning but more severely pol-
luted in the afternoon than the BTH region. Compared with
the BTH and PRD regions, PM2.5 pollution in the PRD re-
gion is much lower and shows a smaller diurnal difference,
with hourly PM2.5 values ranging from 29.49± 5.97 µgm−3

(11:00 LT) to 36.36± 5.76 µgm−3 (08:00 LT). Better natural
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Figure 13. Himawari-8-derived hourly mean PM2.5 maps (5 km) for different times of the day: (a) 08:00 LT, (b) 09:00 LT, (c) 10:00 LT,
(d) 11:00 LT, (e) 12:00 LT, (f) 13:00 LT, (g) 14:00 LT, (h) 15:00 LT, (i) 16:00 LT, (j) 17:00 LT, (k) morning (08:00–12:00 LT), and (l) afternoon
(13:00–17:00 LT) in 2018 across China.

conditions and fewer pollutant emissions mainly explain this
(Su et al., 2018).

In general, our satellite-derived diurnal variations in PM2.5
pollution agree well with ground-based observations at both
national and regional levels but with generally lower PM2.5
concentrations (Fig. 9). The reason is that the PM2.5 mon-
itoring stations are unevenly distributed and vary greatly in
the number of stations at the regional scale. Also, most sites
are distributed in urban areas, leading to inevitable overes-
timations due to urban–rural differences. However, satellite
remote sensing can cope with this deficiency by generat-
ing spatially continuous PM2.5 maps, providing more accu-

rate information about the distribution of and variations in
PM2.5 pollution.

3.2.2 Seasonal and annual variations

Seasonal PM2.5 maps are synthesized from daily PM2.5
maps from 2018 across China according to our previ-
ous approach (Wei et al., 2019a). Our results illustrate
that PM2.5 pollution varies greatly on a seasonal scale
(Fig. 14). Pollution levels are generally low and show
similar spatial patterns in summer (∼ 22.86± 7.05 µgm−3)
and autumn (∼ 23.76± 10.97 µgm−3) across China
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Table 2. Hourly mean PM2.5 concentrations (µgm−3) in 2018 in China, eastern China (ECHN), the Beijing–Tianjin–Hebei (BTH) region,
the Yangtze River Delta (YRD), and the Pearl River Delta (PRD).

Time China ECHN BTH YRD PRD

08:00 29.94± 10.91 31.97± 11.55 42.46± 12.97 38.60± 10.57 29.34± 5.01
09:00 33.37± 12.59 36.29± 13.52 47.32± 15.04 43.55± 11.27 34.81± 5.46
10:00 35.67± 13.53 38.56± 14.05 49.31± 15.03 44.72± 11.17 35.48± 5.47
11:00 35.63± 13.05 38.72± 13.53 49.10± 13.77 44.27± 10.55 36.36± 5.76
12:00 31.23± 11.74 35.10± 12.47 42.38± 12.86 41.37± 9.77 34.56± 5.72
13:00 28.45± 11.40 32.23± 11.73 37.70± 11.55 39.36± 9.22 33.33± 5.48
14:00 26.36± 11.18 30.14± 11.09 34.32± 11.81 37.31± 8.59 32.05± 5.50
15:00 24.25± 10.06 28.67± 10.21 31.95± 11.26 36.77± 8.13 30.34± 5.43
16:00 23.63± 9.26 27.38± 9.15 29.82± 10.13 32.84± 6.30 29.49± 5.97
17:00 23.21± 9.73 26.63± 8.93 28.88± 10.16 27.59± 4.39 31.56± 6.17
Morning 33.29± 11.59 36.15± 12.41 46.12± 13.29 42.50± 10.22 34.52± 4.63
Afternoon 25.11± 9.78 29.01± 9.70 32.53± 10.53 34.76± 6.66 31.42± 4.85

(Table 3). By contrast, it is much more severe
in spring (∼ 32.84± 11.49 µgm−3) and winter
(∼ 39.04± 16.32 µgm−3) across China, especially in
the BTH and YRD regions in winter. The main reasons are
the frequent sandstorms and the long-distance transmission
of sand and dust in spring and the burning of coal and
fossil fuels for heating in winter leading to more pollutant
emissions in northern China.

PM2.5 pollution also shows significant spatial hetero-
geneities across China (Fig. 15), with an annual mean PM2.5
concentration of 28.99± 10.31 µgm−3 in 2018 (Table 3).
High pollution levels are always observed in the Hebei,
Shandong, Jiangsu, Anhui, Henan, Hubei, and Sichuan
provinces. Interactions between intensive human activities,
adverse stagnant weather (e.g., low BLHs and low winds),
and special terrain (e.g., basin) can increase anthropogenic
aerosols (Chen et al., 2008; Wang et al., 2018). By contrast,
PM2.5 pollution is relatively light in the northeast (e.g., Hei-
longjiang and Jilin provinces), the southwest (e.g., Tibet and
Yunnan provinces), and the eastern coastal areas of China
(e.g., Zhejiang and Fujian provinces). These provinces are
sparsely populated or experience meteorological conditions
favorable for dispersing pollution (Su et al., 2018).

3.3 Discussion

3.3.1 Comparison with traditional models

We first compared results from the STLG model with results
from five widely used statistical regression models employed
for estimating PM2.5 in China using the same input dataset
(Table 4). The multivariate linear regression (MLR) model
performs the worst due to the complex nonlinear PM2.5–
AOD relationship. The GWR model performs better because
it takes into account the spatial characteristics of PM2.5 pol-
lution. The generalized additive model (GAM) and the LME
model show overall improved performances with decreasing

estimation uncertainties because of their nonlinear charac-
teristics and stronger data regression abilities. The two-stage
model outperforms the GAM and maximum likelihood esti-
mation (MLE) models with higher CV-R2 values and smaller
estimation uncertainties by combining the advantages of the
GWR and LME models. Our model performs better than
all of the traditional statistical regression models considered
mainly due to its stronger data-mining ability.

The first six rows of Table 5 show the accuracies and ef-
ficiencies of six tree-based machine-learning models when
estimating PM2.5 in China using the same input dataset.
The decision tree (DT; Quinlan, 1986) is a traditional, fre-
quently used, supervised learning classification method. Al-
though the training speed is the fastest and the memory
consumption is the least, it has the worst performance be-
cause of the simple single classifier. The model perfor-
mances of ensemble-learning approaches, i.e., GBDT (Fried-
man, 2001), RF (Breiman, 2001), extremely randomized
trees (ERTs; Geurts et al., 2006), and XGBoost (Chen and
Guestrin, 2016), can be significantly improved by combin-
ing several weak classifiers into a strong classifier. Among
them, the ERT model yields a higher estimation accuracy
and a stronger spatial prediction ability than other ensemble-
learning models. The LightGBM model (Ke et al., 2017) per-
forms the best with the highest accuracy and smallest un-
certainty among all tree-based machine-learning approaches
considered.

The model efficiency differs among these models due to
the large differences in the algorithm design frameworks.
These tree-based machine-learning models can be divided
into two categories. The DT, RF, and ERT models fall into the
“bagging” category, which synthesizes multiple independent
and unrelated weak classifiers into a strong classifier. It al-
lows for work in parallel, which can save much time but may
need more computer memory. The GBDT, XGBoost, and
LightGBM models fall into the “boosting” category, which
synthesizes multiple interdependent and related weak clas-
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Figure 14. Himawari-8-derived seasonal mean PM2.5 maps (5 km) for (a) spring, (b) summer, (c) autumn, and (d) winter of 2018 across
China.

Table 3. Annual and seasonal mean PM2.5 concentrations (µgm−3) in 2018 in China, eastern China (ECHN), the Beijing–Tianjin–Hebei
(BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD).

Time China ECHN BTH YRD PRD

Spring 32.84± 11.49 34.93± 10.95 45.75± 12.96 40.35± 9.55 33.97± 4.50
Summer 22.86± 7.05 24.16± 6.29 29.99± 7.46 26.16± 4.58 23.56± 3.18
Autumn 23.76± 10.97 28.64± 11.60 35.98± 11.20 35.97± 7.80 29.54± 4.43
Winter 39.04± 16.32 48.34± 17.47 48.36± 18.92 57.41± 16.88 43.92± 8.56
Annual 28.99± 10.31 32.56± 10.78 39.32± 11.74 38.64± 8.27 32.98± 4.53

sifiers into a strong classifier. They can only work in serial,
which may take much time but not too much memory. In gen-
eral, the STGB model is the most time-consuming, while the
STET model is the most memory-consuming. By contrast,
the LightGBM model runs very fast and consumes very lit-
tle computer memory, benefiting from a series of algorithm
optimizations (Ke et al., 2017).

After considering spatiotemporal variations, all the newly
defined space-time DT, GBDT, XGBoost, RF, ERT, and
LightGBM models (i.e., STDT, STGB, STXB, STRF, STET,
and STLG) show significant improvements in both overall
estimation accuracy and spatial prediction ability in estimat-

ing hourly PM2.5 concentrations with reference to their orig-
inal models. This further illustrates the importance of includ-
ing spatiotemporal information when constructing PM2.5–
AOD relationships. More importantly, the training speed
of these models did not decrease much, and the memory
consumption did not increase much either. In general, the
STLG model shows the best performance with a high effi-
ciency (i.e., training speed= 46 s, memory usage= 0.60 GB)
among all the space-time tree-based machine-learning mod-
els. Therefore, our new STLG model is highly valuable for
accurate and fast air pollution monitoring, in particular for
our future study extended to the global scale.
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Figure 15. Himawari-8-derived annual mean PM2.5 map (5 km) for the year 2018 across China. The lower-left-inserted density scatterplot
represents out-of-sample cross-validation results for all hourly PM2.5 estimates in China.

Table 4. Comparison of the model performances of widely used
models and the STLG model in estimating PM2.5 from Himawari-8
data at 14:00 LT in 2018 in China (N = 162 840).

Model Out-of-sample validation Out-of-station validation

CV-R2 RMSE MAE CV-R2 RMSE MAE

MLR 0.19 24.17 22.89 0.19 24.19 22.91
GWR 0.39 21.96 20.74 0.37 22.42 21.02
GAM 0.39 19.09 18.64 0.36 19.77 18.89
LME 0.50 18.91 17.34 0.48 19.06 17.95
Two-stage 0.58 17.60 15.71 0.54 17.99 16.01
STLG 0.85 13.09 8.11 0.81 14.63 9.29

3.3.2 Comparison with related studies

We compared Himawari-8-based hourly PM2.5 estimates at
regional and national scales in China with previous related
studies (Table 6). Local hourly PM2.5 concentrations re-
trieved from our national-scale model are more accurate than
those derived from the models developed separately in local
areas, e.g., the LME model (Wang et al., 2017), the GWR,
SVR, RF, and DNN models in the BTH region (Sun et al.,
2019) and the two-stage RF and DNN models in the YRD
region (Fan et al., 2020; Tang et al., 2019). Our model also
outperforms most of the statistical regression models and
machine-learning models focused on the entirety of China,

e.g., the I-LME, IGTWR, RF, AdaBoost, XGBoost, and their
stacked models in China (Chen et al., 2019; Liu et al., 2019;
Xue et al., 2020; T. Zhang et al., 2019). This is due to the
stronger data-mining ability, considering key spatial and tem-
poral information about air pollution (ignored in previous
studies), which introduces more comprehensive factors that
affect PM2.5 pollution (e.g., emission inventories).

4 Summary and conclusion

PM2.5 has a great impact on the atmospheric environment
and is also used as a key indicator in environmental health
studies. It varies diurnally, affected by both natural and hu-
man factors. Previous studies have been based on data from
sun-synchronous satellites which can monitor air pollution
at coarse temporal scales (i.e., daily), while high-temporal-
resolution and accurate information on PM2.5 is needed. In
this study, the Himawari-8/AHI hourly AOD product is em-
ployed to address this issue. Moreover, considering the large
volume of input data and the large errors in PM2.5 estimation
using traditional methods, an efficient and accurate space-
time Light Gradient Boosting Machine (i.e., STLG) model
has been developed. It utilizes meteorological, human, land
use, and topographical parameters and is implemented at
5 km resolution and hourly timescale to generate PM2.5 in-
formation over China. The hourly PM2.5 estimates are evalu-
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Table 5. Comparison of the model performances of different tree-based machine-learning models and the STLG model using the same input
data. Data are from 14:00 LT in 2018 in China (N = 162 840). TSpeed and TMemory refer to the speed and memory consumption during the
model training.

Model Out-of-sample validation Out-of-station validation TSpeed TMemory

R2 RMSE MAE R2 RMSE MAE (s) (GB)

DT 0.52 25.53 14.80 0.48 27.03 15.57 6 0.58
GBDT 0.65 20.03 13.17 0.61 21.20 14.10 94 0.59
XGBoost 0.73 17.94 10.78 0.68 19.59 11.93 456 0.69
RF 0.72 17.86 11.33 0.69 18.80 11.95 165 2.59
ERT 0.74 17.12 10.87 0.72 18.01 11.49 54 3.69
LightGBM 0.78 15.79 9.84 0.73 17.59 11.21 34 0.60
STDT 0.65 21.09 12.33 0.63 22.00 12.85 8 0.60
STGB 0.75 16.82 10.93 0.73 17.61 11.54 503 0.61
STXB 0.82 14.73 8.76 0.78 15.92 9.62 456 0.68
STRF 0.81 14.62 9.17 0.79 15.44 9.69 219 2.75
STET 0.82 14.42 8.95 0.80 15.30 9.55 77 4.25
STLG 0.85 13.09 8.11 0.81 14.63 9.29 46 0.60

Table 6. Comparison of model performances from previous studies in estimating hourly PM2.5 concentrations in China.

Model Model validation Region Reference

R2 RMSE MAE

LME 0.86 24.5 14.2 BTH Wang et al. (2017)
LME 0.63 29.0 18.1 BTH Sun et al. (2019)
GWR 0.76 23.3 16.7 Sun et al. (2019)
SVR 0.77 21.5 12.3 Sun et al. (2019)
RF 0.82 20.3 12.1 Sun et al. (2019)
DNN 0.84 19.9 11.9 Sun et al. (2019)
two-stage RF 0.86 12.4 – YRD Tang et al. (2019)
DNN 0.86 14.3 – YRD Fan et al. (2020)
RF 0.82 19.6 12.2 China Chen et al. (2019)
AdaBoost 0.84 18.3 10.7 Chen et al. (2019)
XGBoost 0.84 18.1 11.4 Chen et al. (2019)
Stacked model 0.85 17.3 10.5 Chen et al. (2019)
RF 0.86 17.3 10.3 China Liu et al. (2019)
I-LME 0.84 – – BTH T. Zhang et al. (2019)

0.80 – – YRD
0.74 – – PRD
0.82 – – China

IGTWR 0.78 21.1 – China Xue et al. (2020)

ated against surface observations, and PM2.5 spatiotemporal
variations are also investigated.

The STLG model predicts hourly PM2.5 values accu-
rately, with high out-of-sample (out-of-station) CV-R2 val-
ues of ∼ 0.81–0.85 (∼ 0.76–0.81) and low RMSE values
of ∼ 11.24–15.56 (∼ 12.49–17.61) µgm−3 throughout the
day. The model can also produce daily (e.g., R2

= 0.91,
RMSE= 10.11 µg m−3), monthly, seasonal, and annual mean
PM2.5 values (e.g., R2

= 0.98, RMSE= 1.6–3.3 µgm−3).
PM2.5 varies diurnally in most areas of mainland China,
where PM2.5 concentrations reach a maximum at 10:00 LT
and are generally low at sunrise and sunset on a given day.

PM2.5 also varies greatly on a seasonal basis, in which win-
ter and summer experience the highest and lowest air pollu-
tion levels, respectively. Comparison results suggest that the
proposed model is more accurate than traditional statistical
regression models, other tree-based machine-learning mod-
els, and various models developed in previous studies. Over-
all, the STLG model is more efficient, having faster training
speed and less memory consumption. These results illustrate
that this algorithm can be useful for real-time monitoring of
PM2.5 pollution in China.
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Data availability. PM2.5 measurements are available at http://
www.cnemc.cn (CNEMC, 2020), the Himawari-8 AOD product
is available at https://www.eorc.jaxa.jp/ptree/ (JAXA Himawari
Monitor, 2020), ERA5 reanalysis products are available at https:
//cds.climate.copernicus.eu/ (CDS, 2020), the MODIS product is
available at https://search.earthdata.nasa.gov/ (NASA, 2020), and
the LandScan™ product is available at https://landscan.ornl.gov/
(ORNL, 2020). The ChinaHighPM2.5 dataset is available at https:
//weijing-rs.github.io/product.html (Wei, 2020).
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