Supporting Information for

Satellite-derived 1-km-resolution PM₁ concentrations from 2014 to 2018 across China

Jing Wei^{\dagger , \ddagger}, Zhanqing Li^{\ddagger *}, Jianping Guo[§], Lin Sun^{//}</sup>, Wei Huang^{\perp},

Wenhao Xue[†], Tianyi Fan[†], Maureen Cribb[‡]

[†] State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China

[‡] Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center,

University of Maryland, College Park, Maryland 20742, United States

§ State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing

100081, China

["] College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

[⊥] State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing

Normal University, Beijing 100101, China

Contents of this file

Tables S1-S5

Figures S1-S8

Dataset	vataset Variable Content		Unit	Spatial resolution	Temporal resolution	Data source	
PM ₁	PM_1	PM ₁	µg/m ³	_	5 min	CAWN	
AOD	AOD	MAIAC AOD	-	1 km	Daily	MCD19A2	
	BLH	Boundary layer height	m	0.125°	3-hour		
	PRE	Total precipitation	mm	0.125°	3-hour		
	ET	Evaporation	mm	0.125°	3-hour	ERA-	
Mataanalagiaal	RH	Relative humidity	%	0.125°	3-hour	Interim	
Meteorological	TEM	2-m air temperature	Κ	0.125°	6-hour	reanalysis	
	SP	Surface pressure	hPa	0.125°	6-hour	product	
	WS	10-m wind speed	m/s	0.125°	6-hour		
	WD	10-m wind direction	m/s	0.125°	6-hour		
	IDT	Industry	Mg/grid	0.25°	Monthly	MEIC	
Pollution	POW	Power	Mg/grid	0.25°	Monthly	meic	
emission RST		Residential	Mg/grid	0.25°	Monthly	data	
	TST	Transportation	Mg/grid	grid 0.25° Month		data	
Landuas	NDVI	NDVI	-	500 m	Monthly	MOD13A3	
Land use	LUC	Land use cover	-	500 m	Annually	MCD12Q1	
	DEM	DEM	m	90 m	-		
Topographic	Relief	Surface relief	m	90 m	-	CDTM	
	Aspect	Surface aspect	0	90 m	-	SKIM	
	Slope	Surface slope	0	90 m	-		
Traffic	Road	Road	М	1 km	-	-	
Population	NTL	Night light	Wcm ⁻² sr ⁻¹	500 m	Monthly	VIIRS	

T 11 C1	C	C	1 /	1 '		4 1
Table NL	Nummary	ot.	data sources	lised 1	n thig	study
Table D1.	Summary	υı	unu sources	useu i	in uns	Study.

Positive varia	ables			Negative variables				
No.	Variable	R	<i>p</i> -value	No.	Variable	R	<i>p</i> -value	
1	AOD	0.378	<i>p</i> < 0.01	1	BLH	-0.351	<i>p</i> < 0.01	
2	RSD	0.372	<i>p</i> < 0.01	2	DEM	-0.235	<i>p</i> < 0.01	
3	SP	0.236	<i>p</i> < 0.01	3	TEM	-0.220	<i>p</i> < 0.01	
4	ET	0.192	<i>p</i> < 0.01	4	WS	-0.188	<i>p</i> < 0.01	
5	TSP	0.188	<i>p</i> < 0.01	5	NDVI	-0.155	<i>p</i> < 0.01	
6	LUC	0.138	<i>p</i> < 0.01	6	PRE	-0.111	<i>p</i> < 0.01	
7	NTL	0.135	<i>p</i> < 0.01	7	Relief	-0.076	<i>p</i> < 0.01	
8	IDT	0.129	<i>p</i> < 0.01	8	Aspect	-0.039	<i>p</i> < 0.01	
9	POW	0.068	<i>p</i> < 0.01	9	RH	-0.009	<i>p</i> < 0.05	
10	WD	0.047	<i>p</i> < 0.01	10	Slope	-0.007	<i>p</i> < 0.05	
11	Road	0.031	<i>p</i> < 0.01					

Table S2. Correlations and effects of independent variables on PM1 concentrations from all themonitoring stations in China from 2014 to 2018.

Year	R ²				RMSE			MAE				
	ERT	SET	TET	STET	ERT	SET	TET	STET	ERT	SET	TET	STET
2014	0.69	0.71	0.72	0.74	19.9	19.2	18.9	18.2	12.5	12.2	11.9	11.5
2015	0.73	0.74	0.74	0.76	14.7	14.7	14.4	14.1	9.5	9.4	9.2	9.0
2016	0.72	0.72	0.72	0.74	15.0	15.0	14.9	14.5	9.2	9.1	9.0	8.7
2017	0.73	0.74	0.76	0.77	13.5	13.3	12.8	12.5	8.5	8.4	8.1	7.9
2018	0.71	0.72	0.73	0.76	10.2	10.1	9.9	9.5	6.3	6.2	6.1	5.9
All	0.73	0.74	0.75	0.77	15.6	15.3	15.0	14.5	9.6	9.4	9.2	8.9

Table S3. Model performance for different extremely randomized trees models in China.

ERT: extremely randomized trees; SET: space extremely randomized trees; TET: time extremely randomized trees; STET: space-

time extremely randomized trees

Year	Spatial coverage	Annual mean PM ₁	Season	Spatial coverage	Seasonal mean PM ₁
2014	98.9 %	$32.3 \pm 12.8 \ \mu g/m^3$	Spring	97.1 %	$22.4 \pm 7.5 \ \mu g/m^3$
2015	99.0 %	$24.5{\pm}8.7~\mu g/m^{3}$	Summer	95.9 %	$16.4 \pm 5.8 \ \mu g/m^3$
2016	99.1 %	$24.7{\pm}8.7~\mu g/m^{3}$	Autumn	98.8 %	$24.4{\pm}8.8~\mu\text{g/m}^3$
2017	99.0 %	$23.8{\pm}8.0~\mu\text{g/m}^3$	Winter	85.8 %	$36.3 \pm 14.5 \ \mu g/m^3$
2018	98.8 %	$16.8 \pm 7.3 \ \mu g/m^3$			
Mean	99.5 %	$24.4{\pm}8.7~\mu\text{g/m}^3$			

Table S4. Annual and seasonal mean spatial coverage and concentrations of 1-km-resolutionPM1 estimates in China.

Model	Model validation			Spatial	Satallita	Time	Defenence	
	R ²	RMSE	MAE	resolution	Satennie	period	Kelelellee	
GAM	0.59	22.5	-	10 km	MODIS	2014	Chen et al. (2018)	
MLR	0.23	32.8	22.5					
LME	0.41	28.7	19.4					
BPNN	0.52	26.1	17.8	5 km	Himawari-8	2015-2017	Zang et al. (2018)	
GRNN	0.61	24.1	14.3					
PCA-GRNN	0.65	22.0	13.8					
PCA-GRNN	0.74	19.0	11.4	5 km	Himawari-8	2015-2017	Zang et al. (2019)	
Two-stage	0.80	15.4	9.3	5 km	Himawari-8	2015-2017	Wang et al. (2019)	
STET	0.72	18.2	11.5	1 km	MODIS	2014	Our study	
STET	0.76	13.7	8.5	1 km	MODIS	2015-2017	Our study	

Table S5. Comparison of the model performances of different regression models in China.

Figure S1. Spatial distribution of surface PM_1 monitoring stations in China (marked as purple dots). The background map shows the digital elevation model (DEM) data (unit = m).

Figure S2. Spatial coverage (%) for (a) Terra, (b) Aqua, (c) Terra and Aqua combined MAIAC products, and (d) their difference (Combined - Terra) from 2014 to 2018 in China.

Figure S3. Correlation coefficient matrix between surface PM_1 measurements and all independent variables in China. Black dots indicate a significant trend at the 99% confidence level (*p*-value < 0.01).

Figure S4. Importance scores of all independent variables for the space-time extremely randomized trees (STET) model.

Figure S5. Density scatterplots of STET-model-estimated PM₁ as a function of measured PM₁ across China for the years (a)-(e) 2014 to 2018 and (f) all years. Statistical metrics are given in each panel: the number of samples (N), the coefficient of determination (R^2), the root-mean-square error (RMSE; μ g/m³), and the mean absolute error (MAE; μ g/m³). The linear regression relationship is also given in each panel. Dashed lines are the 1:1 lines.

Figure S6. Validation of (a) monthly, (b) seasonal, and (c) annual mean PM₁ estimates from the STET model during 2014–2018 in China. Statistical metrics are given in each panel: the number

of samples (N), the coefficient of determination (R^2), the root-mean-square error (RMSE; $\mu g/m^3$), and the mean absolute error (MAE; $\mu g/m^3$). The linear regression relationship is also given in each panel. Dashed lines are the 1:1 lines, and solid lines are the linear best-fit lines through the data points.

Figure S7. Time series of monthly spatial coverage (in black) and mean PM₁ concentration (in red) from 2014 to 2018 across China.

Figure S8. Percentage of high-PM₁ days, i.e., days when daily mean PM₁ concentrations exceed 50 µg/m³, in each year from 2014 to 2018 across China, and in the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB).