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Appendix Texts 

Text S1: Spatiotemporally Weighted Deep Forest model 

Air pollution usually shows significant spatiotemporal variations. Autocorrelations of PM2.5 or 

BC data are often strong and positive in locations or at times that are close to each other. Such 

autocorrelations are weakened or disappear as the spatial or temporal distances increase. The 

autocorrelations are also not uniform with space and time, suggesting that the relative weights in 

combining different datasets to predict surface PM2.5 or BC should vary dynamically with time 

and space. Therefore, the spatiotemporally weighted deep forest (SWDF) model was developed 

to improve both the accuracy and the spatial continuity of the prediction of PM2.5 and BC.1 Here, 

we conducted separate training of the SWDF models for PM2.5 and BC by utilizing data samples 

collected during the study period (2000–2020). 

 

As shown in the flowchart (Figure S2), PM2.5 and BC estimates were conducted by training the 

SWDF model in multiple stages with surface PM2.5 and BC measurements as targets and their 

spatiotemporally paired big data as features, including satellite remote sensing products, model 

simulations, meteorology reanalysis, and anthropogenic emissions.  

 

Stage I: The input features for the SWDF model to predict PM2.5 were collected, including daily 

MAIAC and MERRA2 AODs and other auxiliary variables, including MERRA2-PM2.5 

components (i.e., surface mass concentrations of BC, organic carbon, dust, sulfate, and sea salt); 

nine ERA5 meteorological fields (i.e., temperature, precipitation, u- and v-components of wind, 

surface pressure, boundary layer height, and relative humidity); anthropogenic emissions of 

PM2.5 precursors (i.e., nitrogen oxide, ammonia, sulfur dioxide, and volatile organic 

compounds); normalized difference vegetation index; digital elevation model; and population 

density (Equation 1).  

 

Stage II: BC concentrations were then separately derived from the PM2.5 estimates by further 

combining surface observations, satellite data, and model outputs on a daily basis for each year 

using the SWDF model. In addition to the same meteorological and surface variables used for 

predicting PM2.5, also adopted for the prediction of BC were MISR and MERRA2 absorbing 
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AODs, MERRA2 BC AOD, BC surface mass concentrations, and natural and anthropogenic BC 

emissions (Equation 2).  

 

Mathematically, stages I and II are described as: 

 

𝑃𝑀2.5(𝑖𝑗𝑡)~ 𝑓SWDF(𝑆𝐴𝑂𝐷𝑖𝑗𝑡 , 𝑀𝐴𝑂𝐷𝑖𝑗𝑡 , 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑗𝑡, 𝑃𝑀𝐸𝑀𝑖𝑗𝑚, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡, 𝑁𝐷𝑉𝐼𝑖𝑗𝑚, 𝐷𝐸𝑀𝑖𝑗𝑦, 

𝑃𝑂𝑃𝑖𝑗𝑦, 𝑃𝑠, 𝑃𝑡),       (1) 

 

𝐵𝐶𝑖𝑗𝑡~ 𝑓SWDF(𝐹𝑃𝑀2.5(𝑖𝑗𝑡), 𝐵𝐶𝑆𝑀𝑖𝑗𝑡 , 𝐵𝐶𝐴𝑂𝐷𝑖𝑗𝑡 , 𝑀𝐴𝐴𝑂𝐷𝑖𝑗𝑚, 𝑆𝐴𝐴𝑂𝐷𝑖𝑗𝑚, 𝐵𝐶𝐸𝑀𝑖𝑗𝑚, 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡,  

𝑁𝐷𝑉𝐼𝑖𝑗𝑚, 𝐷𝐸𝑀𝑖𝑗𝑦, 𝑃𝑂𝑃𝑖𝑗𝑦, 𝑃𝑠, 𝑃𝑡),  (2) 

 

where 𝑃𝑀2.5(𝑖𝑗𝑡) and 𝐵𝐶𝑖𝑗𝑡 indicate the ground-based PM2.5 and BC measurements for one grid 

box (i, j) on the tth day of a year; 𝑆𝐴𝑂𝐷𝑖𝑗𝑡 and 𝑀𝐴𝑂𝐷𝑖𝑗𝑡 indicate the MAIAC and MERRA2 

AODs, respectively; 𝐹𝑃𝑀2.5(𝑖𝑗𝑡) represents the full-coverage PM2.5 predictions; 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑗𝑡 

and 𝑀𝑒𝑡𝑒𝑜𝑟𝑜𝑙𝑜𝑔𝑦𝑖𝑗𝑡 represent the MERRA2 PM2.5 components and ERA5 meteorological 

fields, respectively; 𝑃𝑀𝐸𝑀𝑖𝑗𝑚 and 𝐵𝐶𝐸𝑀𝑖𝑗𝑚 represent the emissions contributing to PM2.5 and 

BC, respectively; 𝐵𝐶𝑆𝑀𝑖𝑗𝑡, 𝐵𝐶𝐴𝑂𝐷𝑖𝑗𝑡, and 𝑀𝐴𝐴𝑂𝐷𝑖𝑗𝑚 and represent the MERRA2 BC surface 

mass concentration, BC AOD, and absorbing AOD, respectively; 𝑆𝐴𝐴𝑂𝐷𝑖𝑗𝑚 and 𝑁𝐷𝑉𝐼𝑖𝑗𝑚 

represent the MISR absorbing AOD and normalized difference vegetation index, respectively; 

𝐷𝐸𝑀𝑖𝑗 and 𝑃𝑂𝑃𝑖𝑗𝑦 represent the annual digital elevation model and population density, 

respectively; 𝑃𝑠 and 𝑃𝑡 represent the spatial and temporal terms, where 𝑃𝑠 is characterized by: 

 

𝑃𝑠 ~ (𝐿𝑜𝑛, 𝐿𝑎𝑡, 𝑊𝑠(𝑢𝑙), 𝑊𝑠(𝑢𝑚), 𝑊𝑠(𝑢𝑟), 𝑊𝑠(𝑟𝑚), 𝑊𝑠(𝑏𝑟), 𝑊𝑠(𝑏𝑚), 𝑊𝑠(𝑏𝑙),𝑊𝑠(𝑙𝑚), 𝑊𝑠(𝑐𝑡)), (3) 

𝑊𝑠(𝑚𝑛) =
1

√𝐷Haversine(𝑚𝑛)
,       (4) 

 

where 𝐿𝑜𝑛  and 𝐿𝑎𝑡 represent the longitude and latitude of one grid box in the continental US; 

𝑊𝑠(𝑢𝑙), 𝑊𝑠(𝑢𝑚), 𝑊𝑠(𝑢𝑟), 𝑊𝑠(𝑟𝑚), 𝑊𝑠(𝑏𝑟), 𝑊𝑠(𝑏𝑚), 𝑊𝑠(𝑏𝑙), 𝑊𝑠(𝑙𝑚) and 𝑊𝑠(𝑐𝑡) represent the spatial 

weight factors, i.e., the inverse of the square root of Haversine great-circle distances (unit: km) 

from the center of one point in space to the center of the grid boxes in the upper-left, upper-
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middle, upper-right, right-middle, bottom-right, bottom-middle, bottom-left, and left-middle 

directions and the center of the continental US, respectively. Similarly, 𝑃𝑡 is characterized by: 

 

𝑃𝑡 ~ (𝐷𝑂𝑌, 𝑊𝑡(𝑠𝑒), 𝑊𝑡(𝑠𝑠), 𝑊𝑡(𝑎𝑒), 𝑊𝑡(𝑤𝑠)),  (5) 

𝑊𝑡(𝑚𝑛) =
1

𝐷𝑚𝑛
,       (6) 

 

where 𝐷𝑂𝑌 represents the day of the year; 𝑊𝑡(𝑠𝑒), 𝑊𝑡(𝑠𝑠), 𝑊𝑡(𝑎𝑒), and 𝑊𝑡(𝑤𝑠) represent the 

temporal weight factors, and 𝐷𝑚𝑛 is the inverse distances (unit: day) from that day to the spring 

equinox, summer solstice, autumn equinox, and winter solstice, respectively.   
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Text S2: Calculation of the mortality burden  

The long-term mortality impact of ambient air pollution is assessed at each 1-km2 grid in the 

continental US by utilizing annual mean concentrations of PM2.5 and BC from 2000 to 2020. The 

concentration-response functions for the mortality analysis are expressed as the log-linear 

relationship between relative risk (RR) and related changes in concentrations of air pollutants 

(PM2.5 and BC):2-4 

 

𝑅𝑅(𝑥) = {
1, 𝑥 < 𝑥0

𝑒𝛽∆𝑥, 𝑥 ≥ 𝑥0
}     ,      (7)   

 

where β is the concentration–response coefficient (estimated as the increase in all-cause 

mortality per unit increase in pollutant concentration), and ∆𝑥 represents the difference between 

the current pollutant concentration (𝑥) and the target or threshold pollutant concentration (𝑥0). 

We select 𝑥0 according to the Theoretical Minimum Risk Exposure Level (TMREL). Following 

the recent GBD 2019 study,5 the TMREL for PM2.5 ranges from 2.4 to 5.9 μg m-3. Unlike PM2.5, 

BC currently lacks a universal reference standard. As a result, we defined the TMREL for BC 

based on the minimum value to the fifth percentiles of annual BC distributions, following a 

similar determination method used in the GBD study5 and previous studies.6,7 

 

The all-cause mortality burden (MB) associated with long-term exposure to PM2.5 and BC in a 

given year can be subsequently estimated by using the RR, baseline mortality rate (BMR), and 

population density (POP): 

 

𝑀𝐵 =  
𝑅𝑅−1

𝑅𝑅
× 𝐵𝑀𝑅 × 𝑃𝑂𝑃      (8) 

 

The baseline mortality and population are collected from the United Nations - World Population 

Prospects and LandScanTM global population databases at a 1-km resolution, respectively.8 

 

In sensitivity experiments considering the larger toxicity of BC, the mortality burden assessment 

is a three-step process. First, the BC mass is subtracted from the total PM2.5 to avoid double 

counting. Subsequently, the mortality burden associated with non-BC PM2.5 mass, or 
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𝑀𝐵𝑃𝑀2.5−𝐵𝐶, is calculated using the PM2.5 RR from the Pope et al. (2019) study.9 Second, the 

mortality burden specifically attributed to BC (𝑀𝐵𝐵𝐶) is calculated separately using the pooled 

estimate of BC RR,10 which captures the unique contribution of BC and its pronounced impact 

on health outcomes. Finally, the total mortality burden that considers the larger toxicity of BC 

(𝑀𝐵𝐿𝑇) is obtained by summing these two parts (Equation 9). This approach ensures that the 

distinct role of BC is appropriately considered, resulting in a more thorough assessment of the 

health risks associated with BC-associated PM2.5 exposure. 

 

𝑀𝐵𝐿𝑇 =  𝑀𝐵(𝑅𝑅𝑃𝑀2.5
)𝑃𝑀2.5−𝐵𝐶 +  𝑀𝐵(𝑅𝑅BC)𝐵𝐶     (9) 
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Text S3: Detection of the breakpoint 

In this study, we utilize a well-established method for change point detection, which combines a 

time series analysis with a sliding window approach.11,12 This allows us to identify a potential 

year within a specific period when an abnormal or reversed trend occurred: 

𝑆 =  
𝑚𝑖𝑛[𝑝(𝑃𝑙),𝑝(𝑃𝑟)]

𝑎𝑏𝑠(𝑃𝑙−𝑃𝑟)∗𝑒(𝑃𝑙+𝑟)
     ,      (10) 

Where S is a change point score, p represents the probability of short-term trends for the left 

period (𝑃𝑙) and right period (𝑃𝑟) being insignificant, and e is the fitting error of the trend for the 

combined subseries (𝑃𝑙+𝑟). The probabilities and the statistical significance levels of the trends, 

which are determined using the least-squares linear regression method, are assessed using p-

values based on the t-statistic in a two-sided hypothesis test. The year t is identified as a 

breakpoint when S reaches its lowest value or when a trend reversal with at least one-side 

significance surpasses the 90% confidence level (p < 0.1). To enhance the robustness of our 

analysis, we adopted a time window of 3 years to ensure that each side of the trend spans a 

minimum of 4 years, i.e., [t-3, t, t+3]; consequently, this approach enables us to effectively 

search for trend reversals within the period 2000–2020. 
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Text S4: Removal of wildfire-related PM2.5 

A two-step model is developed here by combining the Pauta criterion and the InterQuartile 

Range (IQR) method to remove outliers of wildfire-related PM2.5 data from daily data: 

 

Step I: We employ the Pauta criterion to identify the specific day when a severe wildfire event 

may occur in the western US, utilizing daily PM2.5 wildfire emission data sourced from the Fire 

Energetics and Emissions Research (FEER) database. To mitigate the impact of extreme PM2.5 

concentrations associated with wildfires, we utilize medians instead of means plus one standard 

deviation as the threshold for filtering, based on statistics from all corresponding days of the year 

for all years spanning the entire study period from 2000 to 2020. 

 

Step II: We adopt the IQR method to identify regions in the western US that are affected by 

heavy wildfires, employing our 1-km daily PM2.5 predictions. The IQR method quantifies 

variability by dividing the data samples into quartiles, specifically by calculating the difference 

(Q3 – Q1) between the third quartile (Q3) and the first quartile (Q1). We set the threshold filter 

as 1.5 times the IQR to detect wildfire-related PM2.5. Any data points that exceed this threshold 

are subsequently excluded from the calculation of the PM2.5 time series. 

 

While this approach is useful for identifying days with extreme wildfire smoke PM2.5, it may 

miss days with a small additional amount in PM2.5 originating from smoke. Future studies are 

needed to deploy process-oriented methods like chemistry transport modeling to quantify the 

contribution to PM2.5 from fire emissions. 
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Text S5: Data Availability 

The Environmental Protection Agency (EPA) and Interagency Monitoring of Protected Visual 

Environments (IMPROVE) PM2.5 and BC measurements are available at 

https://www.epa.gov/aqs and http://views.cira.colostate.edu/fed/. The US Forest Service AirSis 

(USFS) and Western Regional Climate Center (WRCC) PM2.5 measurements are available at 

https://haze.airfire.org/monitoring/. MODIS, MISR, and MERRA2 products are available at 

https://earthdata.nasa.gov/. CAMS global emission inventories are available at 

https://ads.atmosphere.copernicus.eu/. Fire Energetics and Emissions Research (FEER) is 

available at https://feer.gsfc.nasa.gov/. ERA5 global reanalysis is available at 

https://cds.climate.copernicus.eu/. The Shuttle Radar Topography Mission (SRTM) digital 

elevation model (DEM) is available at https://www2.jpl.nasa.gov/srtm/. LandScanTM global 

population data is available at https://landscan.ornl.gov/.  

https://www.epa.gov/aqs
http://views.cira.colostate.edu/fed/
https://haze.airfire.org/monitoring/
https://earthdata.nasa.gov/
https://ads.atmosphere.copernicus.eu/
https://feer.gsfc.nasa.gov/
https://cds.climate.copernicus.eu/
https://www2.jpl.nasa.gov/srtm/
https://landscan.ornl.gov/
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Appendix Figures 

 

Figure S1. Geographical locations of ground-based stations that measure (a) PM2.5 and 

(b) BC. These stations are color-coded based on their associated networks, including the 

Environmental Protection Agency (EPA) Air Quality System (AQS), the Chemical 

Speciation Monitoring Network (CSN), the Interagency Monitoring of Protected Visual 

Environments (IMPROVE), and the United States Forest Service (USFS) across the 

continental United States. The background-colored map indicates the land-use type. The 

colored boundaries define the areas of West, Central, and East United States, as referred 

to in the main text. 
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Figure S2. Flowchart of the developed spatiotemporally weighted deep forest (SWDF) 

model for estimating surface PM2.5 and BC concentrations in this study. 
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Figure S3. Spatial-based cross-validation of measured (x-axis) and predicted (y-axis) (a 

& d) daily, (b & e) monthly, and (c & f) annual PM2.5 (top row) and BC (bottom row) 

concentrations (unit: μg m-3) collected at all ground monitoring stations across the 

continental United States during the period 2000–2020. The colors in the scatter plot 

represent the density of data points that fall within a given grid (frequency). The black 

dashed lines are 1:1 lines, and black solid lines are best-fit lines from linear regression 

between the retrievals and measurements.  
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Figure S4. Temporal-based cross-validation of measured (x-axis) and predicted (y-axis) 

(a & d) daily, (b & e) monthly, and (c & f) annual PM2.5 (top row) and BC (bottom row) 

concentrations (unit: μg m-3) collected at all ground monitoring stations across the 

continental United States during the period 2000–2020. The colors in the scatter plot 

represent the density of data points that fall within a given grid (frequency). The black 

dashed lines are 1:1 lines, and black solid lines are best-fit lines from linear regression 

between the retrievals and measurements. 
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Figure S5. Spatial distribution of model performance at different surface stations. The 

performance is assessed by sample-based (left panels), spatial-based (central panels), and 

temporal-based (right panels) cross-validation of daily PM2.5 (top row) and BC (bottom 

row) retrievals (unit: μg m-3) against ground measurements (unit: μg m-3) for each 

monitoring station across the continental United States during the period 2000–2020. 

Note that only stations with at least 30 samples are shown for statistical significance. 

Small maps in the lower left of each panel show normalized root mean square errors 

(NRMSE). 
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Figure S6. Spatial distributions of annual mean PM2.5 concentrations (unit: μg m-3) for 

each year from 2000 to 2020 at each 1-km2 grid across the continental US. 
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Figure S7. Spatial distributions of annual mean BC concentrations (unit: μg m-3) for each 

year from 2000 to 2020 at each 1-km2 grid across the continental US. 
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Figure S8. Spatial distributions of PM2.5-associated death rate (unit: deaths per 10,000 

people) for each year from 2000 to 2020 at each 1-km2 grid across the continental US. 
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Figure S9. Spatial distributions of (a-d) seasonal mean (unit: μg m-3) and (e-h) temporal 

trends (unit: μg m-3 yr-1) of PM2.5 concentrations from 2000 to 2020 across the continental 

United States. Each black dot in (e-h) represents a 30-km2 area where the trend is 

significant at the 95% (p < 0.05) confidence level. 
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Figure S10. Spatial distributions of (a-d) seasonal mean (unit: μg m-3) and (e-h) temporal 

trends (unit: ng m-3 yr-1) of BC concentrations from 2000 to 2020 across the continental 

United States. Each black dot in (e-h) represents a 30-km2 area where the trend is 

significant at the 95% (p < 0.05) confidence level. 
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Figure S11. Sensitivity analysis of the impact of satellite retrievals of (a) PM2.5 and (b) 

BC at various spatial resolutions (1, 5, and 10 km, indicated by colored solid lines) on the 

assessment of mortality burden in the continental US. The shaded areas represent 

confidence intervals (p < 0.05) on the estimated premature deaths. Total premature deaths 

(Total, unit: thousand) are given, and regressed slope (k) values are also provided, with 

*** representing trends that are significant at the 99% (p < 0.01) confidence level. 
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Figure S12. Spatial distributions of daily PM2.5 maps (1-km resolution) during a severe 

wildfire event that occurred from 9 September to 20 September 2020 in the western 

United States. 
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Figure S13. Spatial distributions of daily BC maps (1-km resolution) during a severe 

wildfire event that occurred from 9 September to 20 September 2020 in the western 

United States. 
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Figure S14. Correlations between (a) PM2.5 and (b) BC concentrations (unit: μg m-3) and 

their respective annual emissions (units: mg m-2 s-1) from fires based on the Fire 

Energetics and Emissions Research (FEER) database13, and time series of fire emissions 

of (c) PM2.5 and (d) BC during the fire season (July–October) from 2001 to 2020 in the 

western US. Dashed lines represent regression lines, and the correlation coefficient (R) 

and slope (k) are given, where *, **, and *** represent correlations and trends that are 

significant at the 90% (p < 0.1), 95% (p < 0.05), and 99% (p < 0.01) confidence levels, 

respectively. 
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Figure S15. Time series of monthly PM2.5 anomalies (defined as the difference between 

the monthly mean within a specific year and the monthly average value over the entire 

period of 2000–2020)14 before (crimson lines) and after (blue lines) removing the daily 

outliers influenced by intense wildfire events from the monthly averages for each year 

from 2000 to 2020 in the (a) western US and (b) California. Regression lines are colored 

by region, and their slope (k, units: μg m-3 yr-1) values are given, with *, **, and ***, 

representing trends that are significant at the 90% (p < 0.1), 95% (p < 0.05), and 99% (p 

< 0.01) confidence levels, respectively.  
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Figure S16. Time series of percentages of the days (unit: %) exceeding the World Health 

Organization (WHO) recommended short-term four interim targets (IT1: daily PM2.5 = 75 

μg m-3), IT2: daily PM2.5 = 50 μg m-3, IT3: daily PM2.5 = 37.5 μg m-3, and IT4: daily 

PM2.5 = 25 μg m-3) and air quality guideline (AQG) level (daily PM2.5 = 15 μg m-3) in 

each year from 2000 to 2020 in the (a) continental United States (US), (b) eastern US 

(EUS), and (c) western US (WUS). The top panel shows time series of daily population-

weighted mean PM2.5 and BC concentrations (unit: μg m-3) in 2020 in the WUS, where 

the red dashed ellipse outlines days with anomalously heavy pollution. 
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Appendix Tables 

Table S1. Summary of data sources used in this study. 

Category Scientific Dataset 
Spatial 

Resolution 

Temporal 

Resolution 
Data Source 

Literature 

Ground 

measurements 

PM2.5 In situ Daily 
EPA, IMPROVE, 

USFS 

15-17 

BC In situ Hourly CSN, IMPROVE 
16 

Satellite remote 

sensing product 

MAIAC AOD 1 km Daily MCD19A2 18 

Absorbing AOD 0.5°×0.5° Monthly MISR 
19 

NDVI 1 km Monthly MOD13A3 
20 

Elevation 90 m - SRTM 
21 

Population distribution 1 km Annual LandScanTM 
8 

Chemical model 

simulation 

Total aerosol extinction AOD  

0.625°×0.5° 1-hour MERRA2 22,23 

Absorbing AOD 

Black carbon extinction AOD 

BC surface mass concentration 

OC surface mass concentration 

SO4
 surface mass concentration 

Dust surface mass concentration 

Sea salt surface mass 

concentration 

Emission 

inventory 

Black carbon 

0.1°×0.1° Monthly CAMS 24 

Ammonia 

Nitrogen oxides 

Sulphur dioxide 

Volatile organic compounds 

Smoke emissions 

0.5°×0.5° 

and 

0.1°×0.1° 

Monthly  FEER 13 

Meteorological 

data 

2-m air temperature 

0.1°×0.1° Hourly ERA5-Land 25 

Total precipitation 

10-m u-component 

10-m v-component 

Surface pressure 

Boundary layer height 
0.25°×0.25° Hourly ERA5 26 

Relative humidity 
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Table S2. Statistics of sample-based, spatial-based, and temporal-based cross-validated 

(CV) results between satellite-derived and ground-measured PM2.5 and BC 

concentrations (μg m-3) in the continental United States (US), East US (EUS), Central US 

(CUS), and West US (WUS) at daily, monthly, and yearly levels. 

PM2.5 
Sample CV [R2 (NRMSE)] Spatial CV [R2 (NRMSE)] Temporal CV [R2 (NRMSE)] 

Daily Monthly Yearly Daily Monthly Yearly Daily Monthly Yearly 

US 0.82 (0.40) 0.97 (0.11) 0.99 (0.07) 0.72 (0.49) 0.81 (0.28) 0.80 (0.26) 0.73 (0.48) 0.96 (0.13) 0.98 (0.08) 

EUS 0.85 (0.24) 0.97 (0.07) 0.99 (0.03) 0.81 (0.28) 0.89 (0.14) 0.90 (0.10) 0.75 (0.32) 0.96 (0.09) 0.99 (0.04) 

CUS 0.84 (0.26) 0.97 (0.07) 0.99 (0.03) 0.78 (0.30) 0.86 (0.15) 0.88 (0.11) 0.71 (0.34) 0.94 (0.10) 0.99 (0.04) 

WUS  0.81 (0.62) 0.97 (0.18) 0.98 (0.13) 0.70 (0.81) 0.76 (0.51) 0.76 (0.46) 0.73 (0.74) 0.96 (0.21) 0.98 (0.14) 

BC Daily Monthly Yearly Daily Monthly Yearly Daily Monthly Yearly 

US 0.80 (0.60) 0.95 (0.23) 0.98 (0.12) 0.68 (0.76) 0.80 (0.47) 0.84 (0.36) 0.78 (0.63) 0.95 (0.24) 0.98 (0.13) 

EUS 0.81 (0.44) 0.94 (0.18) 0.98 (0.10) 0.65 (0.60) 0.73 (0.38) 0.77 (0.32) 0.78 (0.47) 0.94 (0.19) 0.97 (0.11) 

CUS 0.80 (0.43) 0.94 (0.17) 0.98 (0.09) 0.70 (0.53) 0.82 (0.30) 0.86 (0.24) 0.77 (0.45) 0.94 (0.18) 0.97 (0.10) 

WUS  0.77 (0.90) 0.95 (0.31) 0.98 (0.14) 0.67 (1.10) 0.80 (0.66) 0.86 (0.43) 0.75 (0.93) 0.95 (0.32) 0.98 (0.15) 

  



27 
 

Table S3. A summary of time periods, spatiotemporal resolutions, and overall accuracies 

of surface PM2.5 and BC estimates focusing on the United States from previous studies. 
Air 

pollutant 
Model Region Time period 

Temporal 

resolution 

Spatial 

resolution 

CV-

R2 
Network Literature 

PM2.5 Random Forest US 2011 Daily 12 km 0.80 EPA AQS 27 

 KC US 2001-2006 Monthly 10 km 0.86 EPA AQS 28 

 LUR + BME US 2001-2006 Monthly 10 km 0.79 EPA AQS 29 

 CNN US 2011 Daily 10 km 0.84 EPA AQS 30 

 GBT US 2006-2020 Daily 10 km 0.65 EPA AQS 31 

 Ensemble WUS 2008-2018 Daily Zip code 0.72 EPA, IMPROVE, 

Smoke 

17 

 GWR US 2000-2016 Monthly 1 km 0.76 EPA + IMPROVE 32 

 Neural Network US 2000-2012 Daily 1 km 0.84 EPA AQS 33 

 Ensemble US 2000-2016 Daily 1 km 0.86 EPA AQS 34 

 SWDF WUS 2000-2020 Daily 1 km 0.81 EPA + IMPROVE 

+ USFS 

 

  US  Daily 1 km 0.82 This study 

  US  Monthly 1 km 0.99 

BC         

 Random Forest US 2005-2015 Daily > 25 km 0.75 IMPROVE + CSN 35 

 GWR US 2000-2016 Monthly 1 km 0.74 IMPROVE + CSN 32 

 GEOS–Chem US 2010 Annual 12 km - - 36 

 SWDF  2000-2020 Daily 1 km 0.80 IMPROVE + CSN This study 

    Monthly 1 km 0.94  

    Annual 1 km 0.96  

CNN: convolutional neural network; GBT: gradient boosted trees; GWR: geographically weighted regression; KC: 

kriging PM2.5 estimates based on the CSTM; LUR + NME: land use regression model and Bayesian maximum 

entropy model; STGK: space-time geostatistical kriging model; SWDF: spatiotemporally weighted deep forest 
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