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Supplementary Figure 1. Independent spatiotemporal cross-validation results. Density 

scatterplots of spatial (a) out-of-station, (b) out-of-grid, (c) out-of-state, and temporal (d) out-of-

day, (e) out-of-week, and (f) out-of-month cross-validation results of daily PM2.5 predictions 

(unit: μg m-3) against ground-based measurements (unit: μg m-3) at all monitoring stations from 

2017 to 2022 over land (number of samples = 7,089,428). Black dashed lines represent 1:1 lines, 

and red solid lines represent best-fit lines from linear regression. The linear relation, coefficient 

of determination (R2), root-mean-square error (RMSE), normalized RMSE (NRMSE), and mean 

absolute error (MAE) are given in each panel. 
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Supplementary Figure 2. Example of a daily PM2.5 global map without satellite AOD gap 

filling. Spatial distribution of global PM2.5 concentrations (unit: μg m-3) without AOD gap filling 

on 8 October 2020. Zoomed-in regions show PM2.5 concentrations (unit: μg m-3) measured at 

monitoring sites (colored dots) over the (a) western United States, (b) central South America, (c) 

eastern United States, (d) Europe, (e) northwestern Africa, (f) Australia, (g) India, and (h) eastern 

China. Thin black lines represent country boundaries or shorelines, and gray lines represent state 

or provincial boundaries. The maps were created using ESRI ArcGIS Pro 3.0.1. 
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Supplementary Figure 3. PM2.5 pollution during a wildfire event in western North America. 

Spatial distributions of our model-derived (background shading) and ground-measured (dots) 

daily PM2.5 concentrations (unit: μg m-3) during a severe wildfire event that occurred from 9 

September to 20 September 2020 in western North America. 
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Supplementary Figure 4. PM2.5 pollution during a wildfire event in eastern Australia. 

Spatial distributions of our model-derived (background shading) and ground-measured (dots) 

daily PM2.5 concentrations (unit: μg m-3) during a severe wildfire event that occurred from 29 

December 2019 to 9 January 2020 in eastern Australia. 
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Supplementary Figure 5. PM2.5 pollution during a severe haze event in eastern China. 

Spatial distributions of our model-derived (background shading) and ground-measured (dots) 

daily PM2.5 concentrations (unit: μg m-3) for a typical example of a severe haze event that 

occurred from 31 December 2019 to 7 January 2020 in eastern China. 
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Supplementary Figure 6. PM2.5 pollution during a severe haze event in South Asia. Spatial 

distributions of our model-derived (background shading) and ground-measured (dots) daily 

PM2.5 concentrations (unit: μg m-3) during a severe haze event that occurred from 27 October to 

18 November 2020 in South Asia. 
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Supplementary Figure 7. Daily PM2.5 driving factor analysis with XAI. Driving factor 

analysis of daily PM2.5 pollution (a) on a global scale and within specific localized custom 

regions: (b) East Asia, (c) South Asia, (d) Africa, (e) Europe, (f) Western North America, (g) 

Eastern North America, and (h) South America, using Explainable Machine Learning (XAI), 

with sorted permutation importance scores for each feature. Refer to Supplementary Table 4 for 

abbreviation definitions. 
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Supplementary Figure 8. PM2.5 and fire emission differences between El Niño and non-El-

Niño years. Regional relative differences (unit: %) in PM2.5 concentrations between the El Niño 

year (2020) during a month with the most wildfire records and normal years (2018–2019) during 

the same months for (a) North America in September, (b) South America in October, and (c) 

Australia in January. Monthly fire emissions (unit: Gg) in 2020 from the Fire Energetics and 

Emissions Research (FEER) database in these regions and months are shown in (d-f). Blue 

boundaries represent the defined regions of the western United States, central South America, 

and southeastern Australia. The maps were created using ESRI ArcGIS Pro 3.0.1. 
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Supplementary Figure 9. Short-term impact of the COVID-19 lockdown on air quality. 

Time series of 7-day moving average daily population-weighted PM2.5 concentrations (unit: μg 

m-3), and relative differences (unit: %) in PM2.5 concentrations during the same strictest 

lockdown period comparing the pre-pandemic (2018–2019) and post-pandemic (2021–2022) 

eras to the pandemic year (2020) in (a-c) China and (d-f) India. The time interval between gray 

dashed lines in (a) and (d) indicates the most stringent lockdown period, determined by the 

Oxford Coronavirus Government Response Tracker (OxCGRT) stringency index (indicated by 

the black solid lines in a & d). 
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Supplementary Figure 10. Comparing PM2.5 pollution levels and exposure risks at 1 and 10 

km resolutions. Spatial comparisons of PM2.5 pollution level (unit: μg m-3) and exposure risk 

(unit: %) at 1 km and 10 km spatial resolutions in major cities: (a) New York, United States; (b) 

Sao Paulo, Brazil; (c) Johannesburg, South Africa; (d) Rome, Italy; (e) Tehran, Iran; (f) Seoul, 

South Korea; (g) Jakarta, Indonesia, and (h) Guangzhou, China. Solid brown lines represent 

roads. 
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Supplementary Figure 11. Locations of AERONET and PM2.5 monitoring stations. Spatial 

distributions of ground AERONET (red dots) and PM2.5 (yellow dots) monitoring stations used 

in this study. The background map is the NDVI from the MODIS vegetation index product at a 1 

km spatial resolution. The map was created using ESRI ArcGIS Pro 3.0.1. 
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Supplementary Figure 12. 4D-STET framework. Schematic framework of the 4-Dimensional 

Space-Time Extra-Trees (4D-STET) model developed in this study. 
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Supplementary Figure 13. Spatial coverage of daily MAIAC AOD retrievals. Spatial 

distribution of coverage (unit: %) of daily MAIAC AOD retrievals over land, where the insert 

plot shows the daily times series of spatial coverage. The map was created using ESRI ArcGIS 

Pro 3.0.1. 
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Supplementary Figure 14. Before and after satellite AOD gap filling. Comparison of spatial 

patterns of daily AOD (a) before and (b) after gap filling over land on an individual day. Areas 

outlined in red show how gap filling reveals the presence of high AODs previously undetected. 

The maps were created using ESRI ArcGIS Pro 3.0.1. 
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Supplementary Table 1. Statistics of continent-stratified cross-validation results of the 4D-

STET model in predicting daily PM2.5 levels from 2017 to 2022. 

Continent Number of stations CV-R2 RMSE (μg m-3) NRMSE MAE (μg m-3) 

North America 2729 0.76 4.62 0.52 2.53 

South America 276 0.54 14.04 0.66 8.12 

Europe 2064 0.75 6.18 0.46 3.21 

Africa 469 0.60 15.95 0.67 9.32 

Asia 3613 0.89 13.39 0.29 7.70 

Oceania 323 0.73 6.31 0.97 2.09 

CV-R2: coefficients of determination for cluster cross-validation stratified by continent 
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Supplementary Table 2. Top 20 countries with sorted daily exposure risks, showing the 

percentage of days surpassing the WHO-recommended short-term air quality guideline (S-AQG) 

level and interim targets (S-IT4 – S-IT1) in 2022. 

Rank Country Region S-AQG S-IT4 S-IT3 S-IT2 S-IT1 

1 Kuwait Middle East 100.0 95.1 72.1 45.8 17.3 

2 Pakistan South Asia 100.0 92.3 67.7 32.6 0.5 

3 India South Asia 100.0 76.7 64.1 22.7 0.0 

4 China East Asia 100.0 62.7 28.2 9.0 0.3 

5 Qatar Middle East 99.7 93.2 67.7 42.2 9.6 

6 Saudi Arabia Middle East 99.7 86.0 48.5 26.3 2.2 

7 Iran Middle East 99.2 45.2 3.6 0.5 0.0 

8 Egypt Middle East 98.6 41.9 12.6 4.7 0.5 

9 Bahrain Middle East 97.5 69.9 36.4 10.1 0.5 

10 Iraq Middle East 96.2 63.8 30.1 11.5 2.2 

11 
United Arab 

Emirates 

Middle East 95.6 72.1 32.3 10.4 0.3 

12 Sudan North Africa 94.8 44.4 20.3 9.3 2.2 

13 Nepal South Asia 93.7 64.4 29.0 5.2 0.0 

14 Niger North Africa 93.4 69.3 51.2 38.4 17.0 

15 Bangladesh South Asia 91.5 69.0 43.0 28.2 7.4 

16 Oman Middle East 91.2 47.9 15.1 3.0 0.0 

17 Afghanistan West Asia 90.4 29.6 1.1 0.5 0.0 

18 Senegal North Africa 89.6 55.9 21.4 6.3 0.3 

19 Nigeria North Africa 86.8 61.9 35.6 24.1 7.9 

20 Congo Central Africa 84.4 31.8 0.5 0.0 0.0 
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Supplementary Table 3. Top 20 major cities (defined as urban agglomerations with populations 

greater than 300,000 reported by the World Urbanization Prospects), showing the percentage of 

days surpassing the WHO-recommended short-term air quality guideline (S-AQG) level and 

interim targets (S-IT4 – S-IT1) in 2022. 

Rank City Country S-AQG S-IT4 S-IT3 S-IT2 S-IT1 

1 Riyadh* Saudi Arabia 100.0 99.1 86.1 65.6 35.1 

2 Baghdad* Iraq 100.0 97.8 82.8 60.5 27.7 

3 Lahore Pakistan 100.0 96.7 84.0 69.3 43.9 

4 Peshawar Pakistan 100.0 94.6 71.6 40.5 11.0 

5 Faisalabad Pakistan 100.0 94.4 82.0 61.2 22.9 

6 Sargodha Pakistan 100.0 94.2 75.9 47.3 6.8 

7 Rawalpindi Pakistan 100.0 94.0 66.9 37.9 11.9 

8 Gujranwala Pakistan 100.0 94.0 78.3 57.7 20.2 

9 Mardan Pakistan 100.0 93.9 67.7 38.3 9.6 

10 Sialkot Pakistan 100.0 93.9 71.6 42.6 6.8 

11 Gujrat India 100.0 93.8 72.6 43.8 9.1 

12 Tehran* Iran 100.0 92.8 44.9 21.7 2.2 

13 Wah Pakistan 100.0 92.7 60.3 25.1 3.0 

14 Islamabad* Pakistan 100.0 92.0 61.5 31.8 9.5 

15 Kano Nigeria 100.0 91.8 72.1 60.4 31.7 

16 Indore India 100.0 81.5 57.1 23.8 1.2 

17 Karachi Pakistan 99.7 89.4 56.6 26.9 4.1 

18 Khartoum* Sudan 99.7 77.5 38.7 27.7 10.6 

19 Lanzhou China 99.7 70.6 39.4 17.8 1.3 

20 Lima* Peru 99.7 65.2 9.0 0.3 0.0 

Note that * represents the capital of the country. 

  



 19 

Supplementary Table 4. Summary of datasets and sources used in this study. 

Dataset Abbreviation Content Unit 
Spatial 

Resolution 

Temporal 

Resolution 
Data Source 

PM2.5 PM2.5 PM2.5 measurements μg/m3 in situ Hourly OpenAQ, etc. 

AOD SAOD Satellite AOD (550 nm) - 1 km × 1 km Daily MCD19A2 

AOD MAOD Model AOD (550 nm) - 0.25° × 0.3125° 3-hour GEOS-FP 

PM2.5 MPM2.5 Model PM2.5 μg/m3 0.25° × 0.25° Hourly GEOS-CF 

Precursor 

NH3 Ammonia Mg/grid 0.1° × 0.1° 

Monthly CAMS 

NOx Nitrogen oxides Mg/grid  

SO2 Sulfur dioxide Mg/grid  

VOCs 
Volatile organic 

compounds  
Mg/grid  

Meteorology 

TEM Temperature K 0.1° × 0.1° 

Hourly ERA5 

WU u-component of wind m/s  

WV v-component of wind m/s  

SP Surface pressure hPa  

PRE Precipitation mm  

ET Evaporation mm  

BLH Boundary-layer height m 0.25° × 0.25° 

RH Relative humidity %  

Population POP Population - 1 km × 1 km Annual WorldPop 

Economy NTL Nighttime lights  500 m × 500 m Monthly VIIRS 

Land cover NDVI NDVI - 1 km × 1 km Monthly MOD13A3 

Terrain DEM Surface elevation m 90 m × 90 m - SRTM 
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Supplementary Table 5. Comparison of model performance using multidimensional and 

traditional spatiotemporal information from 2017 to 2022 as input variables. 

CV method 
New approach Traditional approach 

CV-R2 RMSE (μg m-3) CV-R2 RMSE (μg m-3) 

Sample-based CV 0.91 9.20 0.88 10.56 

Station-based CV 0.87 10.94 0.84 12.26 

Grid-based CV 0.79 14.17 0.75 15.48 

State-based CV 0.73 16.03 0.69 17.17 

Day-based CV 0.81 13.49 0.78 14.54 

Week-based CV 0.76 15.01 0.74 15.75 

Month-based CV 0.71 16.46 0.69 17.29 

 

  



 21 

Supplementary Note 1: Unravelling daily PM2.5 driving factors with XAI 

PM2.5 concentrations are influenced by a diverse range of factors, both natural processes and 

human activities, which can vary significantly across different regions of the globe. To gain 

deeper insights into the driving factors impacting daily PM2.5 pollution, we employed 

Explainable Machine Learning (XAI) techniques. Adopted here is the Permutation Importance 

(PI) method, which involves randomly permuting the values of individual features in the dataset 

and quantifying the resulting drop in model performance 1. A larger drop indicates a higher level 

of importance for that specific feature. The PI method is a model-independent method and has no 

preference for continuous variables or high-cardinality categorical variables, reflecting the 

generalization ability of these variables. Additionally, it is particularly valuable when dealing 

with data shifts, enabling a more accurate measurement of each feature's contribution 2. 

 

Our findings indicate that globally, aerosols (including satellite AOD and modelled PM2.5) have 

the most significant contribution, accounting for more than half of the score (~51%) (Figure S7). 

Additionally, they dominate (PI = 20–51%) over vast regions experiencing air pollution 3, 

including East Asia and South Asia with substantial anthropogenic emissions, Africa with a 

mixture of dust and biomass burning sources, Europe and the western US with increasing 

wildfires in recent years 4. Besides, meteorological conditions play a crucial role in explaining 

daily PM2.5 levels (PI = 20–73%), particularly relative humidity, evaporation, and boundary layer 

height, which are closely intertwined with the production, hygroscopic growth, and removal of 

PM2.5, as well as the vertical distribution and variations of reactive aerosol particles 5. Terrain 

can influence the transport and deposition of air pollution, highlighting their substantial role. By 

contrast, within clean areas like the eastern US and South America, the driving factors are more 

intricate, leading to the diminishing importance of aerosols, while the significance of population 

density, elevation, and meteorological conditions (e.g., air pressure and temperature) increases 

noticeably. These findings offer an initial interpretable examination of the complex interplay 

between various factors and daily PM2.5 pollution at global and regional scales. Further 

investigations are warranted to explore the underlying physical mechanisms and chemical 

reactions for decision making and devising sustainable measures to tackle air pollution 

challenges. 
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Supplementary Note 2: 4-Dimensional Space-Time Extra-Trees model 

PM2.5 varies spatially and has strong seasonal cycles. Air pollution varies considerably over time 

and space across various scales. Importantly, these variations are often nonlinear. Relying solely 

on coordinates (e.g., longitude, latitude) and time-based information (e.g., month, day of the 

year) may not fully capture the spatiotemporal autocorrelations and fluctuations of individual 

points in both space and time, especially when considering different global hemispheres and the 

influence of seasonal cycles. Therefore, a new 4-Dimensional Space-Time Extra-Trees (4D-

STET) model was developed by optimizing our approach to better capture spatiotemporal 

information based on polar coordinates 6,7, i.e., the spatial term (𝑃𝑠) is represented by the 

unequal autocorrelation and differences of points in space using three spherical coordinates in 

Euclidean space, i.e., 𝑃𝑠 ~ [S1, S2, S3], calculated using latitude (Lat) and longitude (Lon) 

information of one given point in space as follows: 

 

𝑆1 = sin (2𝜋
𝐿𝑜𝑛

360
) ,   (1) 

𝑆2 = cos (2𝜋
𝐿𝑜𝑛

360
) sin (2𝜋

𝐿𝑎𝑡

180
) ,   (2) 

𝑆3 = cos (2𝜋
𝐿𝑜𝑛

360
) cos (2𝜋

𝐿𝑎𝑡

180
) .  (3) 

 

Additionally, we express the temporal term (𝑃𝑡) of points using three helix-shaped trigonometric 

vectors, i.e., 𝑃𝑡 ~ [T1, T2, T3], allowing us to incorporate both the daily variations and seasonal 

cycles of air pollution, calculated using the day of the year (DOY) of one given point in a time 

series as follows: 

 

𝑇1 =
𝐷𝑂𝑌

𝑁
  ,   (4) 

𝑇2 = cos (2𝜋
𝐷𝑂𝑌

𝑁
) ,   (5) 

𝑇3 = sin (2𝜋
𝐷𝑂𝑌

𝑁
) ,   (6) 

 

where N represents the total number of days in a year.  
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Supplementary Note 3: Air pollution modelling 

Satellite AOD gap filling (Equation 7) and surface PM2.5 estimations (Equation 8) were 

performed and constructed by training the developed 4D-STET model with separate input target 

and independent variables, expressed as follows: 

 

𝑆𝐴𝑂𝐷𝑔𝑑~𝑓4D−STET(𝑀𝐴𝑂𝐷𝑔𝑑, 𝐵𝐿𝐻𝑔𝑑 , 𝑇𝐸𝑀𝑔𝑑 , 𝑅𝐻𝑔𝑑 , 𝑊𝑈𝑔𝑑, 𝑊𝑉𝑔𝑑 , 𝑆𝑃𝑔𝑑, 𝑁𝐷𝑉𝐼𝑔𝑚, 𝐷𝐸𝑀𝑔, 

𝑃𝑠𝑔, 𝑃𝑡𝑔) ,   (7) 

 

𝑃𝑀2.5(𝑔𝑑)~ 𝑓4D−STET(𝐹𝐴𝑂𝐷𝑔𝑑, 𝑀𝑃𝑀2.5(𝑔𝑑), 𝑁𝐻4(𝑔𝑚), 𝑁𝑂𝑥(𝑔𝑚), 𝑆𝑂2(𝑔𝑚), 𝑉𝑂𝐶𝑠𝑔𝑚, 𝐵𝐿𝐻𝑔𝑑,   

𝑇𝐸𝑀𝑔𝑑 , 𝑅𝐻𝑔𝑑 , 𝑊𝑈𝑔𝑑, 𝑊𝑉𝑔𝑑 , 𝑆𝑃𝑔𝑑, 𝑃𝑅𝐸𝑔𝑑 , 𝐸𝑇𝑔𝑑, 𝑁𝐷𝑉𝐼𝑔𝑚, 𝑁𝑇𝐿𝑔𝑚, 𝑃𝑂𝑃𝑔𝑦, 𝐷𝐸𝑀𝑔, 

𝑃𝑠𝑔, 𝑃𝑡𝑔) ,   (8) 

 

where 𝑆𝐴𝑂𝐷𝑔𝑑, 𝑀𝐴𝑂𝐷𝑔𝑑, 𝐹𝐴𝑂𝐷𝑔𝑑, 𝑃𝑀2.5(𝑔𝑑), and 𝑀𝑃𝑀2.5(𝑔𝑑) represent combined MAIAC 

AOD, modeled AOD, gap-filled AOD, measured PM2.5, and modeled PM2.5, respectively, in grid 

cell g on day d of the year; 𝐵𝐿𝐻𝑔𝑑, 𝑇𝐸𝑀𝑔𝑑, 𝑅𝐻𝑔𝑑, 𝑊𝑈𝑔𝑑, 𝑊𝑉𝑢𝑔𝑑, 𝑆𝑃𝑔𝑑, 𝑃𝑅𝐸𝑔𝑡, and 𝐸𝑇𝑔𝑡 

represent the mean boundary-layer height, temperature, relative humidity, horizontal and vertical 

components of wind, surface pressure, precipitation, and evaporation, respectively, in grid cell g 

on day d of the year; 𝑁𝐷𝑉𝐼𝑔𝑚, 𝑁𝑇𝐿𝑔𝑚, 𝑁𝐻4(𝑔𝑚), 𝑁𝑂𝑥(𝑔𝑚), 𝑆𝑂2(𝑔𝑚), and 𝑉𝑂𝐶𝑠𝑔𝑚 represent the 

mean normalized vegetation index, nighttime lights, and anthropogenic emissions of ammonia, 

nitrogen oxides, sulfur dioxide, and volatile organic compounds, respectively, in grid cell g of 

month d of the year; 𝐷𝐸𝑀𝑔 represents the surface elevation in grid cell g; 𝑃𝑂𝑃𝑔𝑦 represents the 

population number in grid cell g of year y; and 𝑃𝑠 and 𝑃𝑡 represent spatial and temporal 

information about air pollutants, respectively, in grid cell g. 
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Supplementary Note 4: Data availability 

OpenAQ data is available at https://openaq.org/; China CNEMC PM2.5 measurements are 

available at http://www.cnemc.cn; US EPA PM2.5 measurements are available at 

(https://www.epa.gov); Canada NAPS PM2.5 measurements are available at https://data-

donnees.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/; European 

AQ e-Reporting PM2.5 measurements are available at https://www.eea.europa.eu/; PM2.5 

measurements for South Africa, New Zealand, and Brazil are available at 

https://saaqis.environment.gov.za/, https://www.stats.govt.nz/indicators/pm2-5-concentrations/, 

and https://energiaeambiente.org.br/qualidadedoar/; MODIS MAIAC AOD and NDVI products 

are available at https://search.earthdata.nasa.gov/; GEOS-FP and GEOS-FP data are available at 

https://portal.nccs.nasa.gov/datashare/gmao/; CAMS emission inventory is available at 

https://ads.atmosphere.copernicus.eu/; ERA5 reanalysis is available at 

https://cds.climate.copernicus.eu/; WroldPOP global population data is available at 

https://hub.worldpop.org/; VIIRS nighttime lights is available at 

https://eogdata.mines.edu/products/vnl/; and SRTM DEM is available at 

https://www2.jpl.nasa.gov/srtm/.  
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