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First close insight into global daily gapless
1 km PM2.5 pollution, variability, and
health impact

Jing Wei 1 , Zhanqing Li 1 , Alexei Lyapustin2, Jun Wang 3,
Oleg Dubovik 4, Joel Schwartz5, Lin Sun6, Chi Li 7, Song Liu8 & Tong Zhu 9

Here we retrieve global daily 1 km gapless PM2.5 concentrations via machine
learning and big data, revealing its spatiotemporal variability at an excep-
tionally detailed level everywhere every day from 2017 to 2022, valuable for air
quality monitoring, climate change, and public health studies. We find that
96%, 82%, and 53% of Earth’s populated areas are exposed to unhealthy air for
at least one day, one week, and one month in 2022, respectively. Strong dis-
parities in exposure risks and duration are exhibited between developed and
developing countries, urban and rural areas, anddifferent parts of cities.Wave-
like dramatic changes in air quality are clearly seen around the world before,
during, and after the COVID-19 lockdowns, as is themortality burden linked to
fluctuating air pollution events. Encouragingly, only approximately one-third
of all countries return to pre-pandemic pollution levels. Many nature-induced
air pollution episodes are also revealed, such as biomass burning.

Ambient air pollution poses a major global environmental concern,
ranked as the fourth highest risk factor for human health, causing ~6.7
million global deaths in 2019 according to the Global Burden of Dis-
ease study1. Exposure to PM2.5 (particulate matter with aerodynamic
diameters ≤ 2.5 µm) pollution is associated with a variety of circulatory
and respiratory diseases2–5, contributing to 4million deaths globally in
2020. PM2.5 emitted from different sources may have different health
risks, especially ultrafine particles from urban traffic or combustion,
including black-carbon-containing particles from wildfire smoke6–9.
Besides long-term effects, short-term exposure to high levels of pol-
lution is also a focal point in environmental health studies10–14. With the
accumulating evidence of the health effects of PM2.5, theWorld Health
Organization (WHO) updated its short-term and long-term air quality
guidelines in 2021, aimed at a continual reduction in air pollution15.

Despite a steady increase in PM2.5 monitoring capabilities over the last
decade, many people still live far from monitors. The lack of daily
global high-resolution PM2.5 data has been hindering our ability to
assess air pollution exposure andhealth effects in all parts of theworld.

Regional PM2.5 estimates have been extensively studied from the
satellite perspective using retrieved aerosol optical depth (AOD)
products16–19, but only a handful of studies have been conductedon the
global PM2.5 scale. Lary et al.20 trained an ensemble machine-learning
model to estimate daily PM2.5 from the Sea-viewingWide Field-of-view
Sensor (SeaWiFS) and Terra and Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS) Deep Blue AOD products at a 10 km
resolution. van Donkelaar et al.21 derived global daily PM2.5 from
MODIS and Multiangle Imaging Spectroradiometer (MISR) AOD pro-
ducts via a vertical conversion factor determined from the 3-D
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Goddard Earth Observing System (GEOS)-Chem chemical transport
model (CTM) at a 10 km resolution. Yu et al.22 developed a stacked
machine-learning model to estimate global daily 10 km PM2.5 from
2000 to 2019, integrating GEOS-Chem PM2.5 simulations with
meteorological and geographical data but omitting AOD. Recently, the
spatial resolution of PM2.5 has improved to 1 km through the inclusion
of the MODISMulti-Angle Implementation of Atmospheric Correction
(MAIAC) AOD product23, combining the Geographically Weighted
Regression (GWR) and CTM models. However, global 1 km PM2.5 esti-
mates are only available on annual24,25 or monthly26 scales.

Global, daily, high-resolution, and high-quality PM2.5 data are
particularly in demand for a wide range of studies, from air quality to
climate change and public health, but monitoring it from space is
extremely challenging. PM2.5 can vary dynamically in space and time,
especially over land, exhibiting strong spatiotemporal
heterogeneities27 caused by many complex and diverse factors. They
are sensitive not only to pollution emission profiles, the density of the
human population, and meteorological conditions, but also to
regionally variant geographic location and terrain conditions28.
Observing the heterogeneities requires dense in situ monitoring net-
works, which only exist in a handful of countries for limited periods.
They are very unevenly distributed, dense in developed and populated
regions but sparse or missing in under-developed and rural regions,
posing great challenges in spatial extrapolation17. Space-borne remote
sensing offers global and uniform coverage, but it is only feasible
under clear-sky conditions. The ubiquitous presence of clouds
(60–70% globally) would lead to very large data gaps17,29, seriously
hindering our ability to observe air pollution routinely, exacerbated by
inherent difficulties in separating clouds from severe haze and heavy
smoke, both of particular concern to the public.

These challenges can be tackled by applying machine learning
(ML)models to a variety of datasets. A state-of-the-artMLmodel allows
for the extraction and integration of virtually all information

pertaining to PM2.5 from ground measurements, satellite remote sen-
sing products, CTM simulations of aerosols and PM2.5, as well as
population density, topography, atmospheric reanalysis of meteor-
ological fields, pollutant emission inventory, and economic level of
regional development. In particular, our ML-extended model takes
advantage of model simulations and accounts for the spatiotemporal
autocorrelations and differences in air pollutants. It first solves the
missing data in satellite aerosol products over cloudy and snow/ice
surfaces, then retrieves PM2.5 from gap-filled AOD. This leads to spa-
tially complete and more accurate daily PM2.5 information for expo-
sure risk and health burden assessments.

Following painstaking efforts in choosing/refiningMLmodels and
compiling big datasets from a wide range of sources, we generated a
long-term (1 January 2017 to 31 December 2022) global (over land),
daily, 1 km resolution, gapless PM2.5 dataset for the first time, and used
it to address some important questions, such as (1) What are the local,
regional, and global PM2.5 concentrations on a given day?; (2) What is
the daily risk exposure to PM2.5 pollution and its associated impact on
public health?; (3) How big is the impact of wildfires and COVID-19
episodes on local to global scales?; among others.

Results and discussion
Model validation and uncertainty
Our model can accurately estimate daily PM2.5 concentrations at most
ground-basedmonitoring stations, as confirmedby high sample-based
cross-validated coefficients of determination (CV-R2 > 0.6), low root-
mean-square error (RMSE < 10μgm−3), and normalized RMSE scaling
bymean (NRMSE <0.6) values atmore than 80%of the stations (Fig. 1a,
b). On average, our model achieves a highly reliable overall accuracy,
with an average sample-based CV-R2 of 0.91 and RMSE (NRMSE) of
9.2μgm−3 (0.37) for daily retrievals, with accuracies improving on
monthly (e.g., CV-R2 = 0.97 and RMSE = 4.15μgm−3) and annual (e.g.,
CV-R2 = 0.98 and RMSE = 2.77μgm−3) scales (Fig. 1c–e). Additionally,

Fig. 1 | Model validation and uncertainties. Spatial distributions of sample-based
cross-validated (CV) a coefficients of determination (R2) and b uncertainty (i.e.,
normalized root-mean-square errors, or NRMSE) of daily PM2.5 estimates (unit:
μgm−3) against ground-based measurements (unit: μgm−3) at each monitoring
station, and density scatterplots of sample-based CV results between c daily esti-
mates (number of samples = 7,089,428), d monthly composites (number of

samples = 255,075), and e annual composites (number of samples = 23,229) and
ground-based measurements collected at all monitoring stations from 2017 to
2022 over land. Black dashed lines are 1:1 lines, and red lines are best-fit lines from
linear regression. Additional statistical metrics given in c–e are the linear regres-
sion equation, root-mean-square error (RMSE), and mean absolute error (MAE).
The maps in a, b were created using ESRI ArcGIS Pro 3.0.1.
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independent spatiotemporal cross-validation results highlight the
model’s capability in accurately predicting daily PM2.5 levels at loca-
tions (i.e., station-, grid-, and state-based CV-R2 = 0.87, 0.79, and 0.76,
and RMSE = 10.94, 14.17, and 16.03μgm−3, respectively) as well as on
dates lacking ground measurements (i.e., day-, week-, and month-
based CV-R2 = 0.81, 0.73, and 0.71, and RMSE = 13.49, 15.01, and
16.46μgm−3, respectively) (Supplementary Fig. S1). Moreover, our
model exhibits a comparable “within” R2 of 0.82 to the (station-based)
space CV-R2 (0.87), indicating its ability to accurately predict local and
daily variations in PM2.5 pollution, going beyond capturing only the
differences in average values across locations or between seasons.
Also, the model’s strong performance in continent-stratified CV
(cluster CV-R2 = 0.54–0.89) further underscores its robustness in
handling large areas with limited training stations (Supplementary
Table S1).

Day-to-day gapless PM2.5 variations
To portray global variations, Fig. 2 presents our 1 km gapless PM2.5

retrievals on an individual day (8October 2020). In general, the spatial
patterns of satellite-derived PM2.5 retrieval were highly consistent with
ground measurements both globally (sample-based CV-R2 = 0.92) and
regionally (Fig. 2a–h). Air quality was very good (PM2.5 < 8μgm−3) in
Canada, the eastern United States (US), Europe, and Australia (Fig. 2c,
d, f). By contrast, severePM2.5 pollution occurred in the Beijing-Tianjin-
Hebei region in eastern China, the Indo-Gangetic Plain in northern
India (Fig. 2g, h), and Zambia in southern Africa, especially around
their respective metropolises (i.e., Beijing, New Delhi, and Lusaka),
strongly linked with their high population densities and intensive
human activities leading to large anthropogenic emissions. Extremely
high PM2.5 levels (> 80μgm−3) were also caused by smoke from both
natural and human-induced fires such as those in the western US
(especially in California) and in central South America (Fig. 2a, b).
Additionally, high PM2.5 concentrations were detected in the Sahara in
northern Africa (Fig. 2e) and the Taklamakan Desert in northwestern
China, both associated with dust storms. Conventional satellite-based
remote sensing approaches are only applicable to clear-sky pixels,
resulting in very spotty distributions of PM2.5, as illustrated in Sup-
plementary Fig. S2 in contrast to the smooth image of Fig. 2, sig-
nificantly impeding the ability to discern spatial patterns of PM2.5

pollution, especially on small scales, and markedly increasing the
probability of missing crucial high-pollution events.

Our gap-filling method27 allows us to capture PM2.5 pollution
muchmore thoroughly to observe strong region-to-region and day-to-
day variations throughout the year around the world. While the
retrieved PM2.5 may be misleading in pointing out the sources of pol-
lution because pollution is inherently both situ and transboundary,
they still portray the severity and variations of air pollution problems
at various scales, ranging from local and regional to national and
continental levels. We can, e.g., clearly see the disparity between
developed and developing worlds (categorized by the World Popula-
tion Review) (Fig. 3a–c) with much lower and higher PM2.5 loads,
respectively, approximately half (48%). The influences of natural vari-
ables may also be inferred: for instance, a shallow planetary boundary
layer likely plays a major role in ubiquitous pollution maxima during
northern winters30. Daily data are invaluable in accurately pinpointing
the dates and locations of extreme high-pollution events from natural
disasters, such as the wildfires/bushfires that have devastated the
United States (US), Brazil, and Australia during the fire seasons, as well
as spring dust storms in Nigeria (outlined by red dashed ellipses in
Fig. 3d–g). Notably, they provide a clearpicture of the spatial dynamics
of smoke emissions at various stages of wildfire, encompassing the
initial ignition, spreading, intensification, and final suppression, as
demonstrated by two examples from the western US (Supplementary
Fig. S3) and eastern Australia (Supplementary Fig. S4). Additionally,
these data excel in identifying the timing of high-pollution events
caused by anthropogenic emissions, as observed in China and India
(Fig. 3h, i). They are particularly useful for the continuous monitoring
of regional severe haze episodes over time and space, offering insights
from the formation to the end, as evident in two examples from
eastern China (Supplementary Fig. S5) and northern Asia (Supple-
mentary Fig. S6).

Last, we employed Explainable Machine Learning (XAI) to inter-
pret the driving factors behind daily PM2.5 variations by calculating the
permutation importance for each feature (Supplementary Note 1 and
Fig. S7). Our findings revealed that satellite AOD andmodeled PM2.5 as
the primary global contributors, accounting for 51%, followed by
meteorological variables (especially relative humidity and planetary
boundary-layer height) ranging from 20% to 73%, and aerosol
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Fig. 2 | Example of a daily 1 km gapless PM2.5 global map on 8 October 2020.
Satellite-derived global PM2.5 concentrations (unit: μgm−3) at a 1 km spatial reso-
lution and zoomed-in maps (outlined by red rectangles) showing ground-based
PM2.5 measurements (colored dots) over the a western United States, b central

South America, c eastern United States, d Europe, e northwestern Africa,
f Australia, g India, and h eastern China. Thin black lines represent country
boundaries or shorelines, and gray lines represent state or provincial boundaries.
The maps were created using ESRI ArcGIS Pro 3.0.1.
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hygroscopicity. The roles of contributing factors vary from region to
region due to different causes, whichmay help providemore effective
policies to combat air pollution.

Daily health-risk exposure to PM2.5 pollution
In 2022, global daily population-weighted PM2.5 generally satisfied the
WHO-recommended short-term interim targets 1 and 2 (i.e., S-IT1 and
S-IT2: daily PM2.5 = 75 and 50μgm−3, respectively) and came close to
achieving the interim target 3 (i.e., S-IT3: daily PM2.5 = 37.5μgm−3), with
only a few exceptions (3%) on certain days. However, a concerning 57%
of the days did not meet the interim target 4 (i.e., S-IT4: daily
PM2.5 = 20μgm−3), and even worse, all days (100%) exceeded the air
quality guidance (i.e., S-AQG: daily PM2.5 = 15μgm−3) level (Fig. 3a).
Daily PM2.5 of developed countries achieved all short-term interim
targets, but 15% of the days still exceeded the S-AQG level (Fig. 3b). By
contrast, in developing countries, all days met the S-IT1 and S-IT2
targets, but 12% and 66% of the days failed to meet the S-IT3 and S-IT4
targets, respectively, and not a single daymet the S-AQG level (Fig. 3c).
Overall, only a small percentage of countries (13%) exceeded the S-IT1
target at least once. However, as more stringent air quality standards
were imposed, the proportions steadily increased, with 28%, 38%, and
66% of countries failing to meet the S-IT2, S-IT3, and S-IT4 targets,
respectively (Fig. 4a–d).

The top 20 countries worldwide recording the highest daily PM2.5

exposure risk primarily came from North Africa and the Middle East
(65%), and South and East Asia (25%), among which Kuwait, Pakistan,
India, and China topped the list, with all days (100%) surpassing the

S-AQG level (Fig. 4e and Supplementary Table 2). A staggering 87%,
80%, and 67% of countries experienced unhealthy air for at least 1, 7,
and 30 days, respectively. This phenomenon worsened significantly at
the city level, with nearly all (~99.7%) of 1860 major cities (defined as
urban agglomerations with populations greater than 300 thousand,
according to the United Nations World Urbanization Prospects) being
exposed to PM2.5 risk (within 10 × 10 km2 around city centers) for at
least one day, with exposure periods for 7 days and 30 days reaching
97% and 91%, respectively (Fig. 4e). Despite the proportions con-
sistently decreasing with more stringent targets, a considerable num-
ber of cities still faced severe air pollution, with daily PM2.5 levels
exceeding the S-IT1 target for 44% (26% and 12%) of cities for 1 day (7
and 30 days) (Fig. 4a). Among the top 20 cities, 16, including the
capitals of four countries, experienced the most frequent exposure
risk, with all days (100%) above the S-AQG level, and 10 of them were
from Pakistan (Supplementary Table 3).

Figure 5 provides a comprehensive global assessment of the
population PM2.5 daily exposure risk for 2022 at a fine 1 km2 grid in
terms of WHO’s recommended short-term four interim targets and
air quality guideline level. Except for densely populated areas like the
Indo-Gangetic and North China Plains, most regions showed a rela-
tively small number of days with severe pollution above the two S-IT1
and S-IT2 targets of less than 20% (Fig. 5a, b). The proportions were
much smaller in many developed countries like those in North
America and Europe. However, with the continuous promotion of
interim targets 3 and 4, both the areas covered and their respective
exposure risk to moderate PM2.5 pollution increased (Fig. 5c, d).

μg
μg

μg

Fig. 3 | Time series of daily gapless PM2.5 for the year 2022. Time series of daily
population-weightedmean PM2.5 concentrations (unit: μgm−3) as a function of the
day of the year in 2022 (blue lines) for the a global world, b developed, and
c developing countries, and six selected countries: d United States, e Brazil,
f Australia, g Nigeria, h China, and i India. Orange lines in d–f show the daily PM2.5

time series for the El Niño fire year 2020. Red dashed ellipses outline days with

anomalously heavy pollution. Inserted bar charts show the percentages of days
(unit: %) exceeding the WHO-recommended short-term four interim targets [S-
IT1(daily PM2.5 > 75μgm−3), S-IT2 (daily PM2.5 > 50μgm−3), S-IT3 (daily
PM2.5 > 37.5μgm−3), S-IT4 (daily PM2.5 > 25μgm−3)], and air quality guideline (S-
AQG) level (daily PM2.5 > 15μgm−3), respectively.
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Regarding the S-AQG level (Fig. 5e), nearly all global inhabited areas
were exposed to short-term PM2.5 risks, including some developed
countries like Italy (A), Poland, and Slovakia, and mega-cities like Los
Angeles in the USA (B), with more than 40% of days above the S-AQG
level. High daily exposure risks (> 70%) were concentrated in devel-
oping countries, particularly those in South Asia. Similar conditions
were also observed in many big cities or localities, including Mexico
City in Mexico (C), Región Metropolitana de Santiago in Chile (D),
Sao Paulo in Brazil (E), Gauteng in South Africa (F), Tehran in Iran (G),
Krung Thep in Thailand (H), Ho Chi Minh in Viet Nam (I), and Pyon-
gyang in North Korea (J).

In general, ~23%, 41%, 56%, 80%, and 96% of Earth’s populated
areas exceeded the WHO S-IT1 through S-IT4 targets and the S-AQG
level (Fig. 5i–v), respectively, at least once in 2022. The respective
proportions are 13%, 24%, 33%, 52%, and 82% for 7 days, and 5%, 15%,
22%, 32%, and 53% for 30 days in a year. Notably, significant differences
existed between developed and developing countries. While the
exposure areas for at least 1 day above S-AQG are comparable (96% vs.
96%), the difference rapidly widened with higher exposure risks, e.g.,
S-IT4 (73% vs. 88%), S-IT3 (39% vs. 75%), S-IT2 (19% vs. 64%), and S-IT1
(6% vs. 41%).More importantly, this gap (e.g., S-AQG) grew significantly
by expanding the exposure period to 7 days (74% vs. 90%) and 30 days
(29% vs. 78%), emphasizing the greater short-term exposure risk in
middle- and low-income counties (Fig. 5vi). Arguably, when the expo-
sure days are related to wildfire or agricultural biomass burning and
come in succession rather than randomly during the year, they
potentiallymay lead tomoreadversehealth effects9,31,32. Thesefindings
also illustrate the global extent of air quality challenges and the need
for comprehensive efforts to tackle air pollution and work towards
meeting international air quality standards.

Short-term PM2.5 change and mortality burden
El Niño year 2020 stands alone, resulting in large regional contrasting
differences: stronger than usual wildfire activity and biomass burning
led to a large number of smoke-related PM2.5 emissions, resulting in
elevated levels of positive PM2.5 anomalies in global hot and dry
regions during the fire seasons, including the western part of North
America33–35, most areas of South America36–38, and eastern Australia
(Supplementary Fig. S8). Specifically, during the month with the most
wildfire records in 2020, population-weighted PM2.5 levels were 224%,
80%, and 143% higher in the western US in September, central
South America in October, and southeastern Australia in January
(outlined in blue in the figure), respectively, compared to historical
(2018–2019) levels. Subsequently, we computed the difference in
cumulative premature deaths attributed to short-term PM2.5 exposure
between fire and normal years. Enhanced wildfire smoke-related PM2.5

emissions in the western US (September), Brazil (October), and
southeastern Australia (January) led to additional deaths of 832 (95%
confidence level, or CI: 567, 1122), 449 (95% CI: 305, 592), and 93 (95%
CI: 63, 122) people, respectively. However, the above-mentioned sea-
sonal effects, limited in their geographical extent, are superimposed
on the longer-term near-global-scale changes brought about by the
reduced pollution associated with the COVID-19 pandemic.

Toquantify the short-term impact of theCOVID-19 lockdownonair
quality, we first examined the time series of daily PM2.5 variations in the
pandemic year 2020, and preceding (2018–2019) and subsequent
(2021–2022) baseline years as a function of the Oxford Coronavirus
Government Response Tracker (OxCGRT) Stringency Index (SI) in two
populous countries (Supplementary Fig. S9). PM2.5 pollution responded
swiftly to epidemic containment measures: when the SI experienced
sharp rises, PM2.5 dropped rapidly, whereas when restrictions eased,

Fig. 4 | Country- and city-level daily risk exposure to PM2.5 pollution. Scatter
distributions of daily exposure risk showing the percentages (unit: %) of days
exceeding the WHO-recommended four short-term interim targets: a S-IT1
(daily PM2.5 > 75μgm−3), b S-IT2 (daily PM2.5 > 50μgm−3), c S-IT3 (daily
PM2.5 > 37.5μgm−3), d S-IT4 (daily PM2.5 > 25μgm−3), and e short-term air quality
guideline (S-AQG) level (daily PM2.5 > 15μgm−3) for each country (indicated by red
diamonds) as a function of the logarithm of the population (unit: thousand) in

2022. Inserted subplots show the sorted daily exposure risk for each major city
(indicated by blue dots). The top ten countries with the highest exposure risks for
different WHO daily air quality standards are annotated in gray text. Note that the
abbreviations for the labeled countries represent: AE United Arab Emirates,
BD Bangladesh, BF Burkina Faso, BH Bahrain, CN China, EG Egypt, IN India, IQ Iraq,
IR Iran, KWKuwait,MLMali, NENiger, NGNigeria, NPNepal, PK Pakistan, QAQatar,
SA Saudi Arabia, TD Chad.
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PM2.5 recovered gradually. Remarkably, during the strictest control
periods, significant improvements in air quality were observed in China
(4 February to 6March 2020: SI = 79–82)39 and India (1March to 12 April
2020: SI = 87–100)40 compared to the pre-pandemic era, especially in
their highly populated provinces (e.g., Shandong and Henan) or states
(e.g., Uttar Pradesh and Madhya Pradesh). The average declines in
population-weighted PM2.5 concentrations were 14% and 21%, saving
3111 (95% CI: 2132, 4066) and 7667 (95% CI: 5251, 10,027) lives, respec-
tively. Interestingly, during the post-pandemic era, a striking spatially
contrasting pattern emerged as PM2.5 rebounded strongly across the
entirety of India, with a notable increase of 27%, resulting in an addi-
tional loss of 6653 (95%CI: 4557, 8700) lives. By contrast, in China, PM2.5

did not fully recover and even remained about 4% lower than in 2020,
saving 450 (95% CI: 310, 586) lives. This disparity can be primarily
attributed toChina’s rigid determination toprevent the epidemic under
the ‘zero-COVID’ policy (especially after the Omicron outbreak in late
2021)41, as well as the persistent efforts to reduce pollutant emissions42.

A deeper understanding has been attempted to tackle the follow-
ing important scientific and social questions. What was the global-scale
impact of the COVID-19 lockdown on air quality, and did PM2.5 experi-
ence a rebound during the post-pandemic era? Also, what were the
benefits or losses of the COVID-19 epidemic to public health? To
address these questions, we calculated the changes in PM2.5 and
attributed premature deaths during the most stringent lockdown per-
iods both before and after the pandemic for each respective country
(Fig. 6). Across the globe,most countries had enacted strictmeasures to
counter epidemics (average lockdown duration = 44 days), e.g., ~94% of
them recorded a maximum SI surpassing 60, with an average value of
83. This manifested as negative PM2.5 anomalies seen in ~80% of global

countries, with larger reductions (> 30%) observed in countries in
South Asia, northern Europe, and North Africa (Fig. 6a), primarily
attributed to a significant decrease in emissions of major pollutants43,
aligning with findings reported in previous studies44–47. By contrast,
opposite growth trends were observed in only a handful of coastal
countries in southern South America, Southeast Asia, and southern
Europe48. Overall, the global population-weighted PM2.5 in 2020
decreased by ~9% during the lockdown period relative to the pre-
pandemic years. The improved air quality resulting from COVID-19
lockdowns yielded significant health benefits for the majority of coun-
tries worldwide (Fig. 6b), especially those with dense populations. This
led to anotable reduction in thenumberofprematuredeaths attributed
to short-term PM2.5 exposure, amounting to approximately 19,031 (95%
CI: 13,020, 24,915) people on a global scale. Nevertheless, COVID-19
itself was responsible for ~3.3 million deaths in 202049.

In the post-pandemic era, noteworthy disparities emerged in the
global change in PM2.5 pollution and the associated mortality burden.
Substantial increases in both PM2.5 levels and associated premature
deathswere observed acrossmost countries inNorthAmerica, Europe,
North Africa, the Middle East, and South Asia (Fig. 6c, d), primarily
attributed to a rapid surge in anthropogenic emissions. By contrast,
opposite declining trends were found in the majority of countries
spanning South America, South Africa, East and Southeast Asia, and
Oceania. In general, approximately 59% of countries have undergone a
rebound in PM2.5 levels, while the rest have kept below those of 2020.
Although these shifts have yielded both favorable and adverse out-
comes for air quality and public health, global PM2.5 levels have
encountered an approximate 6% increase, leading to an additional
global burden of premature deaths, estimated at around 14,444 (95%

Fig. 5 | Global daily risk exposure to ambient PM2.5 pollution. Spatial distribu-
tions of global daily exposure risks with the percentages (unit: %) of days exceeding
the WHO-recommended four short-term interim targets: a S-IT1 (daily
PM2.5 > 75μgm

−3), b S-IT2 (daily PM2.5 > 50μgm−3), c S-IT3 (daily PM2.5 > 37.5μgm
−3),

d S-IT4 (daily PM2.5 > 25μgm
−3), and e short-term air quality guideline (S-AQG) level

(daily PM2.5 > 15μgm
−3) at each 1-km2 grid in areas with a population density

> 1per km2 for the year 2022. Square insets zoom in on hot spots with high
daily PM2.5 exposure risks in mega-cities (A-J). The (i–v) bar charts show the

percentages (unit: %) of populated areas that have at least 1, 7, or 30 days exceeding
theWHOdaily air quality standards for the global, developed, and developingworld.
The line chart plots in (vi) show the percentages (unit: %) of populated areas as a
function of WHO daily air quality standards for developed and developing countries
(i.e., solid and dashed lines, respectively) and for exposure periods of 1 day, 7 days,
and 30 days (different colored lines). The maps were created using ESRI ArcGIS
Pro 3.0.1.
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CI: 9889, 18,896) people. Nevertheless, only 32% of countries have
returned to the levels of pollution seen before the pandemic.

Benefits of 1-km-resolution daily PM2.5 data
To evaluate the added value of the 1 km product for investigating air
quality and public health, we conducted a sensitivity analysis by
aggregating the 1 km data to 10 km. While the results are similar at the
global and country levels, substantial differences exist at finer scales
(Supplementary Fig. S10). Compared with 10 km data, our 1 km PM2.5

data pinpoints the PM2.5 pollution and exposure risk at the city level,
which concerns the public, as evidenced by amore detailed assessment
of pollution inhomogeneity and changes within cities, and the identi-
fication of local pollution emissions in populated districts and along
transportation routes (brown lines in the figure). This enables us to gain
more insights into urban-rural differences, especially in major cities of
the world, such as New York City, Sao Paulo, and Johannesburg (the
largest cities in theUnited States, Brazil, and South Africa, respectively),
and Rome, Tehran, Seoul, Jakarta, and Guangzhou (the capitals of Italy,
Iran, South Korea, Indonesia, and Guangdong Province, China,
respectively). In general, the use of 10 km data underestimates daily
city-level PM2.5 pollution levels (associated with premature mortality)
and especially exposure risk, with an average difference of approxi-
mately 5% (4%) and 14% relative to the 1 km data. This underestimation
is particularly pronounced within core urban regions, which exhibit
larger spatial heterogeneities compared to the suburbs, attributed to
the loss of spatial details at coarser resolutions, aligning with the
findings of previous studies50–52. These results highlight the importance
of finer spatial-resolution data for targeted air quality monitoring and
health assessment, particularly within urban or suburban scales.

Strengths and Summary
The first global, daily, gapless 1 km PM2.5 dataset has been generated
under the veil of big data by incorporating ample input data, such as
worldwide ground-based observations related to the surface and
population, satellite remote sensing products, meteorological

reanalysis, and emission inventories. In particular, MODIS MAIAC
satellite AOD retrievals and GEOS Forward Processing (GEOS-FP) AOD
simulations are used together to fill the spatial gaps due to the pre-
sence of clouds, increasing the data availability by 36%. We have
developed a high-performance and explainable ensemble-learning
model, which solves the spatiotemporal heterogeneities of air pollu-
tants, as confirmedby various independent spatial and temporal cross-
validation approaches. The resultingGlobalHighPM2.5 (i.e., global high-
resolution and high-quality PM2.5) dataset, offering global 1 km gapless
PM2.5 distributions and variations on a daily basis, will help investigate
the health effects of acute PM2.5 exposure, a realm that remains rela-
tively unexplored, particularly at finer urban scales. Compared to the
currently available 10 km datasets, the much-improved 1 km grid
resolves city districts based on residents’ income levels, providing
valuable utility for environmental justice studies.

Taking advantage of this dataset, we conducted an in-depth exam-
ination of global daily PM2.5 fluctuations and driving factors, population-
exposure risks, and associated mortality burden in each 1 km2 grid.
Strong day-to-day PM2.5 variations, inclusive of extreme high-pollution
episodes originating from natural disasters and anthropogenic emis-
sions, are well captured. The use of XAI reveals that aerosols and
meteorological factors contribute 51% and 34%, respectively, to the
variability of global daily PM2.5 estimates. In 2022, 87%of countries, along
with nearly all major cities (~99.7%), experienced unhealthy air quality on
at least one day. The global fractions of the Earth’s populated area sur-
passing the WHO-recommended daily PM2.5 exposure thresholds of 15,
25, 37.5, 50, and 75 µgm−3 were 96%, 80%, 56%, 41%, and 23%, respec-
tively. The discrepancies between developed and developing countries
rapidly grow as exposure risk levels rise and exposure periods expand.
Achieving the objectives of the WHO air quality guidelines globally thus
remains a challenge requiring a joint international effort. Our dataset also
proved invaluable in capturing the intricate dynamics of PM2.5 pollution
and health outcomes resulting from acute events like the global spread
of COVID-19. PM2.5 pollution in 80% of countries has decreased, pre-
sumably in response to the implementation of the strictest lockdown

Fig. 6 | PM2.5 change and mortality burden during the COVID-19 lockdown.
Spatial distributions of relative differences (unit: %) in (a, c) PM2.5 pollution and the
associated (b, d) mortality burden (MB, unit: people) for each country during the
most stringent period, as determined by the Oxford Coronavirus Government
Response Tracker (OxCGRT) stringency index, between the (a, b) pre-pandemic
(2018–2019) and (c, d) post-pandemic (2021–2022) eras in comparison to the

pandemic year (2020). Inserted probability density distributions illustrate changes
in PM2.5 pollution and associatedpremature deaths, where the black left- and right-
hand numbers indicate percentages of countries with positive (↑) and negative (↓)
changes, and red numbers indicate changes in global averages for PM2.5 con-
centrations (unit: %) and total premature deaths (unit: thousand). The maps were
created using ESRI ArcGIS Pro 3.0.1.
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measures, saving approximately 19.0 (95% CI: 13.0, 24.9) thousand lives.
However, after the pandemic, 59% of countries have experienced a
rebound in PM2.5 pollution compared to 2020, resulting in 14.4 (95% CI:
9.9, 18.9) thousand lives lost; merely 32% of countries have reverted to
the PM2.5 levels experienced prior to the pandemic.

Methods
Big data
Hourly PM2.5 measurements from 2017 and 2022 were collected at
approximately ~9500 ground-based monitoring stations around the
world (Supplementary Fig. S11). Sources of data include OpenAQ, the
China National Environmental Monitoring Centre, the US Environ-
mental Protection Agency, the Canadian National Air Pollution Sur-
veillance Program, the European Air Quality e-Reporting, and other
national networks (e.g., South Africa, New Zealand, and Brazil). A
substantial majority (~74%) of the stations have been and continue to
be dedicated to collecting long-term observations spanning at least
two years. Raw data has undergone further quality control measures,
including the removal of outliers, such as negative, repeating (occur-
ring for more than three continuous hours), and extreme (exceeding
the 99.9th quantiles) values. Subsequently, days having at least 20% of
valid hourly PM2.5 measurements were identified and averaged to
obtain daily means at each monitoring site22,53. To ensure consistency
with auxiliary variables, all daily PM2.5 measurements were adjusted to
the UTC time zone and then used for independent training and vali-
dation of ML models.

Satellite AOD plays an increasing role in the global mapping of
PM2.5 as the number of ground PM2.5 monitoring stations decreases54.
The MAIAC AOD product (MCD19A2) has the highest spatial resolution
of 1 km among all MODIS operational aerosol products over land with
considerable accuracy23. This product was thus selected as the main
predictor for estimating PM2.5 concentrations. Terra (~10:30 AM over-
pass time) and Aqua (~13:30 PM overpass time) MAIAC daily 1 km AOD
retrievals at 550nmwith recommended quality assurances53 from 2017
to 2022 were used. Spatially complete AOD assimilations (550nm)
from the GEOS-FP system every 3 hours at a horizontal resolution of
0.25° ×0.3125° were employed to fill satellite AOD gaps. The global
AErosol RObotic NETwork (AERONET) network provides instantaneous
AOD measurements made at ~500 stations over land every 15min
(Supplementary Fig. S11). Only recommended high-quality (Level 2.0)
AOD data55 at 550nm interpolated by the quadratic polynomial fitting
method56 were used to validate the satellite gap-filled AODs.

First, hourly PM2.5 simulations from the GEOS Composition
Forecast (GEOS-CF) system at a horizontal resolution of 0.25° × 0.25°
were employed57. Considering secondary formation via chemical
reactions, four main precursors of PM2.5, i.e., ammonia, nitrogen oxi-
des, sulfur dioxide, and volatile organic compounds, are also involved,
provided by the Copernicus Atmosphere Monitoring Service (CAMS)
global high-resolution (~0.1° × 0.1°, monthly) emission inventory58.
Meteorological variables and their vertical profiles affect air pollution,
including temperature, humidity, wind, pressure, precipitation, eva-
poration, and boundary-layer height. Therefore, these meteorological
data were collected from hourly ERA5-Land (~0.1° × 0.1°) and ERA5
global (~0.25° × 0.25°) reanalysis datasets59,60. In addition, population
density, economic level, land cover, and terrain changes impacting air
pollution were also considered, directly or indirectly represented by
highly relevant and available satellite remote sensing products, i.e.,
global high-resolution annual WorldPop unconstrained population
(1 km)61, monthly Visible Infrared Imaging Radiometer Suite (VIIRS)
nighttime lights (500m)62, monthly MOD13A3 normalized difference
vegetation index (NDVI; 1 km), and Shuttle Radar Topography Mis-
sion (SRTM) digital elevationmodel (DEM; 90m) products. In total, 19
independent variables (Supplementary Table 4) were included in this
study. Here, the higher-spatial-resolution variables were aggregated,
while the low-spatial-resolution variables were resampled to uniform

0.01° × 0.01° grids using the bilinear interpolation approach19 andused
for subsequent air pollution modeling.

Air pollution modeling
Here, a tree-based ensemble-learning extremely randomized trees
(extra-trees)63 was adopted for modeling air pollutants, whose unique
advantages include stronger randomness and an anti-interference
ability with reference to other similar types of models of superior
performance19,64. The model performance can be significantly
improved if the spatiotemporal heterogeneity of air pollution is con-
sidered during modeling53. Therefore, for global modeling, we devel-
oped a 4-Dimensional Space-Time Extra-Trees (4D-STET) model by
introducing Euclidean spherical space and triangular spiral time into
the originalMLmodel (Supplementary Note 2) to better describe both
the autocorrelations and differences of individual points in spatial
locations (e.g., different global hemispheres) and temporal series (e.g.,
seasonal cycles)65, as evidenced by the superior model performance
compared to the traditional method (Supplementary Table 5).

The 4D-STET framework (Supplementary Fig. S12) includes
two steps:
1. For satellite AODgapfilling, Terra andAquaMAIACAODretrievals

were first combined via linear regression conversion models to
minimize the biases caused by different observation times and to
expand the spatial coverage53. Available MAIAC AOD retrievals
were thenused as true values to train the 4D-STETmodel together
with the main GEOS-FP AOD simulations and potentially influen-
cing factors, i.e., spatially continuous meteorological fields (i.e.,
boundary-layer height, temperature, humidity, wind, and pres-
sure), land cover, and elevation, as well as spatiotemporal terms.
Missing satellite retrievals can thus be computed to generate
daily gapless AODs (Supplementary Note 3).
Filling in both satellite scanninggaps andmissing values inMAIAC
AOD retrievals over cloudy and snow/ice-covered scenes and
some heavy pollution episodes (Supplementary Fig. S13) with the
developed ML model significantly increased the spatial coverage
from 64% to 100%, providing spatially continuous AOD informa-
tion at each 1 km grid cell on any given day (Supplementary
Fig. S14). AOD is well reconstructed not only in clean-air regions
like North America and most of Europe but also over highly
polluted and cloudy regions, including India and eastern China
(outlined by red rectangles in the figure), with a higher fraction of
missing retrievals in MAIAC AOD products. Our daily gap-filled
AODs agree reasonably well with AERONET ground-based AOD
measurements, with an average correlation (R) of 0.73, which is
only marginally lower when compared to AOD retrievals without
gap-filling (R =0.74). While gap-filling can inherently introduce
some uncertainties, it is a potent technique to achieve full AOD
coverage. Leveraging the advanced ML model alongside non-
linear interpolation techniques could help minimize this uncer-
tainty. The substantial increase in daily spatial coverage (~36%),
accompanied by a nearly three-fold expansion in the training
sample size, could arguably outweigh the slight accuracy loss
(~1%) in the gap-filled AOD data.

2. For the surface PM2.5 estimation, their ground measurements
were regarded as targets, and satellite gap-filled AODs, GEOS-CF
PM2.5 simulations, and CAMS pollutant emissions were regarded
as main predictors. Auxiliary variables affecting PM2.5 pollution,
including all meteorological fields (i.e., boundary-layer height,
temperature, humidity, wind, pressure, precipitation, and eva-
poration), NDVI, nighttime lights, DEM, population, and spatio-
temporal terms, were input to the 4D-STET model to establish a
robust AOD-PM2.5 relationship. Last, the trained model was
employed to retrieve daily PM2.5 concentrations for each grid
using gapless AOD and other auxiliary variables, relying on the
reconstructed relationship (Supplementary Note 3).
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Model validation approach
Sample-based, station-based, and day-based ten-fold cross-validation
(10-CV)methods66, threewidely used techniques,wereused to validate
the model, i.e., all data samples, groundmonitors, and days were each
randomly divided into ten folds, of which nine were used formodeling
and one for independent validation. This process ran ten times, in
turn, to get the final accuracy after averaging. They were used to
evaluate the overall accuracy of themodel and its predictive ability in
areas and on days without any available observations53. Considering
the unbalanced distribution of observation stations and the spatio-
temporal cluster characteristics of PM2.5 pollution, we conducted
additional cluster-based spatial (including grid-based and state-
based) and temporal (including week-based and month-based) CV
approaches22,67 to enhance our evaluation by expanding the space
and time intervals. The cluster-based spatial CV followed a procedure
similar to the station-based CV but utilized grid cells (1° × 1°) and
states as geographic units instead. Our dataset comprised ~1930 grid
cells and 700 states across the globe, which were then randomly
divided into 10 equal folds. Similarly, the cluster-based temporal CV
followed a procedure similar to the day-based CV but utilized weeks
and months as date units. This enabled us to effectively isolate spa-
tiotemporal autocorrelations among observation stations and thor-
oughly evaluate the spatiotemporal predictive ability of our model.
In the space CV, we also calculated the “within” R2 by including
separate intercepts for each station and each year and assessed the
model performance in capturing within-location variations over
time68. Last, concerning the spatial aggregation in global ground
stations, we implemented the continent-stratified CV method by
stratifying the monitoring sites within each continent (i.e., North
America, South America, Africa, Europe, Asia, and Oceania) and
conducting separate space CV22,69 to evaluate the model’s perfor-
mance across diverse site densities.

Short-term exposure risk assessment
Population-health exposure risks related to daily ambient PM2.5 pollu-
tionwere assessed according to the global air quality guidelines updated
by the WHO in 202115 over a given location. Specifically, daily exposure
risks were calculated by counting the proportion of days in a year with
daily PM2.5 concentrations exceeding the WHO-recommended short-
term air quality guideline (AQG) level (daily PM2.5 = 15μgm

−3) and four
interim targets, i.e., IT4 (25μgm−3), IT3 (37.5μgm−3), IT2 (50μgm−3), and
IT1 (75μgm−3), respectively. Alternatively, for every day, we can evaluate
the proportion of the global populated area (using the 1 km× 1 km
gridded global population database) with PM2.5 pollution exceeding the
recommended daily air quality standards.

Impact of the COVID-19 lockdown
2020 was an extraordinary year. Besides being an El Niño fire year,
COVID-19 broke out at the beginning of the year and rapidly spread
across the world70. In response, countries implemented diverse poli-
cies, and the Oxford Coronavirus Government Response Tracker
(OxCGRT)projectdeveloped adaily Stringency Index (SI, ranging from
0 to 100, reflecting the strictness of responses) based on various
relevant metrics closely tied to human activities for each country (see
details in Hale et al., 2021)71. This index provides a means to quantify
the short-term impact of COVID-19 lockdowns on global air quality.
Specifically, we first utilized the SI to identify periods marked by the
most stringent measures enacted in each country, defined as the
duration showcasing themost significant escalation and decline of the
OxCGRT SI, wherein the maximum value surpasses 20. Subsequently,
we investigated the improvement and rebound of air quality by cal-
culating the changes in PM2.5 concentrations and associated mortality
burden during the most stringent lockdown period for the pre-
pandemic (2018–2019) and the post-pandemic (2021–2022) eras
compared to the pandemic year (2020). To minimize the influence of

meteorological conditions or extreme events like wildfires on our
assessment, we used the data that had been adjusted for meteor-
ological factors accordingly72.

Acute mortality burden estimation
Health effects, as well as health exposure guidelines, are generally
characterized as long-term, short-term, or acute. While long-term
exposure is generally well characterized by annual PM2.5

24, our daily
global PM2.5 data allowsus to investigate thehealth impactof exposure
to short-term PM2.5 pollution, a topic attracting more andmore public
attention. However, unlike long-term studies1, no unified exposure-
response function is available10–13. The acute mortality burden attri-
butable to daily PM2.5 exposure was thus assessed by employing an
exposure-response function determined by a meta-analysis from a
recent review study14, e.g., the relative risk formortality from all causes
is 1.0065 (95% CI: 1.0044–1.0086) with an increase in daily PM2.5 con-
centration per 10μg/m3. The short-termmortality burden attributable
to daily PM2.5 pollution can be expressed as:

MBg,d =
RRg ðCg Þ � 1

RRg,dðCg Þ
×POPg,y ×

BMRc,y

N
, ð1Þ

where MBg,d represents the short-term mortality burden with
estimated premature deaths in grid g on day d; RRg,dðCg,dÞ represents
the relative risk subject to the daily PM2.5 exposure level in grid g on
day d; POPg,y represents the population in grid g in year y; BMRi,j,y,c

represents the baseline mortality rate for country c in year y; and N
represents the number of days in the year. The population data is
obtained from the 1 km WorldPop product. To mitigate the impact of
the model bias, we made additional adjustments by aligning
WorldPop’s grid-specific population number with the country-
specific population number reported by the United Nations.

Data availability
Source Data and the global gapless high-resolution and high-quality
PM2.5 (GlobalHighPM2.5) dataset generated in this study have been
deposited in the Zenodo database [10.5281/zenodo.6449740] and are
publicly available. Other data used in this study are provided in the
supporting information (Supplementary Note 4).

Code availability
All analyses and visualizations in this study are facilitated by data and
codes, which have been deposited in the Zenododatabase [https://doi.
org/10.5281/zenodo.6449740]. Other mapping and data processing
are conducted using ArcGIS, Microsoft Excel, and Python.

References
1. Murray, C. J. L. et al. Global burden of 87 risk factors in 204 coun-

tries and territories, 1990-2019: a systematic analysis for the Global
Burden of Disease Study 2019. Lancet 396, 1223–1249 (2020).

2. Southerland, V. A. et al. Global urban temporal trends in fine par-
ticulate matter (PM2.5) and attributable health burdens: estimates
from global datasets. Lancet Planet. Health 6, e139–e146 (2022).

3. Bowe, B. et al. The 2016 global and national burden of diabetes
mellitus attributable to PM2.5 air pollution. Lancet Planet. Health 2,
e301–e312 (2018).

4. Pope, C. A. et al. Lung cancer and cardiovascular disease mortality
associatedwith ambient air pollution and cigarette smoke: shape of
the exposure-response relationships. Environ. Health Perspect. 119,
1616–1621 (2011).

5. Turner, M. C. et al. Outdoor air pollution and cancer: an overview of
the current evidence and public health recommendations. CA
Cancer J. Clin. 70, 460–479 (2020).

6. Schraufnagel, D. E. The health effects of ultrafine particles. Exp.
Mol. Med. 52, 311–317 (2020).

Article https://doi.org/10.1038/s41467-023-43862-3

Nature Communications |         (2023) 14:8349 9

https://doi.org/10.5281/zenodo.6449740
https://doi.org/10.5281/zenodo.6449740


7. Sinharay, R. et al. Respiratory and cardiovascular responses to
walking down a traffic-polluted road compared with walking in a
traffic-free area in participants aged60yearsandolderwith chronic
lung or heart disease and age-matched healthy controls: a rando-
mised, crossover study. Lancet 391, 339–349 (2018).

8. Chen, G. et al. Mortality risk attributable to wildfire-related PM2.5

pollution: a global time series study in 749 locations. Lancet Planet.
Health 5, e579–e587 (2021).

9. Aguilera, R., Corringham, T., Gershunov, A. & Benmarhnia, T.
Wildfire smoke impacts respiratory health more than fine particles
from other sources: observational evidence from Southern Cali-
fornia. Nat. Commun. 12, 1493 (2021).

10. Chen, R. et al. Fine particulate air pollution and daily mortality. a
nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care.
Med. 196, 73–81 (2017).

11. Di, Q. et al. Association of short-term exposure to air pollution with
mortality in older adults. JAMA 318, 2446–2456 (2017).

12. Kloog, I., Ridgway, B., Koutrakis, P., Coull, B. A. & Schwartz, J. D.
Long- and short-term exposure to PM2.5 and mortality: using novel
exposure models. Epidemiology 24, 555–561 (2013).

13. Liu, C. et al. Ambient particulate air pollution and daily mortality in
652 cities. N. Engl. J. Med. 381, 705–715 (2019).

14. Orellano, P., Reynoso, J., Quaranta, N., Bardach, A. & Ciapponi, A.
Short-term exposure to particulate matter (PM10 and PM2.5), nitro-
gen dioxide (NO2), and ozone (O3) and all-cause and cause-specific
mortality: Systematic review and meta-analysis. Environ. Int. 142,
105876 (2020).

15. WHO. WHO global air quality guidelines. Particulate matter (PM2.5

and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon
monoxide. Geneva: World Health Organization. (2021).

16. Li, Y. et al. Satellite remote sensing for estimating PM2.5 and its
components. Curr. Pollut. Rep. 7, 72–87 (2021).

17. Shin, M. et al. Estimating ground-level particulate matter con-
centrations using satellite-based data: a review. GIScience Remote
Sens. 57, 174–189 (2020).

18. Xu, X., Zhang, C. & Liang, Y. Review of satellite-driven statistical
models PM2.5 concentration estimation with comprehensive infor-
mation. Atmos. Environ. 256, 118302 (2021).

19. Wei, J. et al. Reconstructing 1-km-resolution high-quality PM2.5

data records from 2000 to 2018 in China: spatiotemporal
variations and policy implications. Remote Sens. Environ. 252,
112136 (2021).

20. Lary, D. J. et al. Estimating the global abundance of ground level
presence of particulate matter (PM2.5). Geospat. Health 8,
S611–S630 (2014).

21. Donkelaar, A. V. et al. Global estimates of ambient fine particulate
matter concentrations from satellite-based aerosol optical depth:
development and application. Environ. Health Perspect. 118,
847–855 (2010).

22. Yu, W. et al. Global estimates of daily ambient fine particulate
matter concentrations and unequal spatiotemporal distribution of
population exposure: a machine learning modelling study. Lancet
Planet Health 7, e209–e218 (2023).

23. Lyapustin, A., Wang, Y., Korkin, S. & Huang, D. MODIS collection 6
MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765 (2018).

24. van Donkelaar, A. et al. Global estimates of fine particulate matter
using a combined geophysical-statistical method with information
from satellites, models, and monitors. Environ. Sci. Technol. 50,
3762–3772 (2016).

25. Hammer, M. S. et al. Global estimates and long-term trends of fine
particulate matter concentrations (1998-2018). Environ. Sci. Tech-
nol. 54, 7879–7890 (2020).

26. van Donkelaar, A. et al. Monthly global estimates of fine particulate
matter and their uncertainty. Environ. Sci. Technol. 55,
15287–15300 (2021).

27. Wei, J. et al. Ground-Level NO2 surveillance from space across
China for high resolution using interpretable spatiotemporally
weighted artificial intelligence. Environ. Sci. Technol. 56,
9988–9998 (2022).

28. Liang, F. C. et al. The 17-y spatiotemporal trend of PM2.5 and its
mortality burden in China. Proc. Natl. Acad. Sci. USA 117,
25601–25608 (2020).

29. Christopher, S. A.&Gupta, P. Satellite remote sensingof particulate
matter air quality: the cloud-cover problem. J. Air Waste Manag.
Assoc. 60, 596–602 (2010).

30. Li, Z. et al. Aerosol and boundary-layer interactions and impact on
air quality. Natl. Sci. Rev. 4, 810–833 (2017).

31. Sigsgaard, T. et al. Health impacts of anthropogenic biomass
burning in the developedworld. Eur. Respir. J.46, 1577–1588 (2015).

32. Karanasiou, A. et al. Short-term health effects from outdoor expo-
sure tobiomassburningemissions: a review.Sci. Total. Environ.781,
146739 (2021).

33. Ren, L. et al. Widespreadwildfires over the western United States in
2020 linked to emissions reductions during COVID-19. Geophys.
Res. Lett. 49, e2022GL099308 (2022).

34. Findlay, A. Pantanal fires. Nat. Clim. Chang. 12, 118–118 (2022).
35. Zhou, X. et al. Excess of COVID-19 cases and deaths due to fine

particulate matter exposure during the 2020wildfires in the United
States. Sci. Adv. 7, eabi8789 (2021).

36. van der Velde, I. R. et al. Vast CO2 release from Australian fires in
2019–2020 constrained by satellite. Nature 597, 366–369 (2021).

37. Ward, M. et al. Impact of 2019–2020mega-fires on Australian fauna
habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).

38. Godfree, R.C. et al. Implications of the 2019–2020megafires for the
biogeography and conservation of Australian vegetation. Nat.
Commun. 12, 1023 (2021).

39. Liu, F. et al. Abrupt decline in tropospheric nitrogen dioxide
over China after the outbreak of COVID-19. Sci. Adv. 6,
eabc2992 (2020).

40. Soni, P. Effects of COVID-19 lockdown phases in India: an atmo-
spheric perspective. Environ. Dev. Sustain. 23, 12044–12055 (2021).

41. Goldberg, E. E., Lin, Q., Romero-Severson, E. O. & Ke, R. Swift and
extensive Omicron outbreak in China after sudden exit from ‘zero-
COVID’ policy. Nat. Commun. 14, 3888 (2023).

42. Li, S. et al. Emission trends of air pollutants and CO2 in China from
2005 to 2021. Earth Syst. Sci. Data 15, 2279–2294 (2023).

43. Cooper,M. J. et al. Globalfine-scale changes in ambientNO2during
COVID-19 lockdowns. Nature 601, 380–387 (2022).

44. Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19
lockdowns cause global air pollution declines. Proc. Natl; Acad. Sci.
USA 117, 18984–18990 (2020).

45. Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. Air pollution
declines during COVID-19 lockdowns mitigate the global health
burden. Environ. Res. 192, 110403 (2021).

46. Liu, F., Wang, M. & Zheng, M. Effects of COVID-19 lockdown on
global air quality and health. Sci. Total. Environ. 755, 142533 (2021).

47. He, C. et al. Global, continental, and national variation in PM2.5, O3,
andNO2 concentrations during the early 2020COVID-19 lockdown.
Atmos. Pollut. Res. 12, 136–145 (2021).

48. Hammer, M. S. et al. Effects of COVID-19 lockdowns on fine parti-
culate matter concentrations. Sci. Adv. 7, eabg7670 (2021).

49. Wang, H. et al. Estimating excess mortality due to the COVID-19
pandemic: a systematic analysis of COVID-19-related mortality,
2020–21. Lancet 399, 1513–1536 (2022).

50. Paolella, D. A. et al. Effect of model spatial resolution on estimates
of fine particulate matter exposure and exposure disparities in the
United States. Environ. Sci. Technol. Lett. 5, 436–441 (2018).

51. Korhonen, A. et al. Influence of spatial resolution on population
PM2.5 exposure and health impacts. Air Qual. Atmos. Health 12,
705–718 (2019).

Article https://doi.org/10.1038/s41467-023-43862-3

Nature Communications |         (2023) 14:8349 10



52. Bai, H., Wu, H., Gao, W., Wang, S. & Cao, Y. Influence of spatial
resolution of PM2.5 concentrations and population on health impact
assessment from 2010 to 2020 in China. Environ. Pollut. 326,
121505 (2023).

53. Wei, J. et al. Estimating 1-km-resolution PM2.5 concentrations across
China using the space-time random forest approach. Remote Sens.
Environ. 231, 111221 (2019).

54. Tian, Z., Wei, J. & Li, Z. How important is satellite-retrieved aerosol
optical depth in deriving surface PM2.5 using machine learning?
Remote Sens. 15, 3780 (2023).

55. Giles, D. M. et al. Advancements in the Aerosol Robotic Network
(AERONET) Version 3 database – automated near-real-time quality
control algorithm with improved cloud screening for Sun photo-
meter aerosol optical depth (AOD) measurements. Atmos. Meas.
Tech. 12, 169–209 (2019).

56. Wei, J. et al. MODIS Collection 6.1 3 km resolution aerosol optical
depth product: global evaluation and uncertainty analysis. Atmos.
Environ. 240, 117768 (2020).

57. Keller, C. A. et al. Description of the NASA GEOS composition
forecast modeling system GEOS-CF v1.0. J. Adv. Model Earth Syst.
13, e2020MS002413 (2021).

58. Granier, C. et al. The Copernicus Atmosphere Monitoring Service
global and regional emissions (April 2019 version) Copernicus
Atmosphere Monitoring Service (CAMS) report. https://doi.org/10.
24380/dObn-kx24316 (2019).

59. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol.
Soc. 146, 1999–2049 (2020).

60. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global rea-
nalysis dataset for land applications. Earth Syst. Sci. Data 13,
4349–4383 (2021).

61. Lloyd, C. T. et al. Global spatio-temporally harmonised datasets for
producing high-resolution gridded population distribution data-
sets. Big Earth Data 3, 108–139 (2019).

62. Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual
time series of global VIIRS nighttime lights derived from monthly
averages: 2012 to 2019. Remote Sens. 13, 922 (2021).

63. Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees.
Mach. Learn. 63, 3–42 (2006).

64. Wei, J. et al. Himawari-8-derived diurnal variations in ground-level
PM2.5 pollution across China using the fast space-time Light Gra-
dient Boosting Machine (LightGBM). Atmos. Chem. Phys. 21,
7863–7880 (2021).

65. Wei, J. et al. Separating daily 1 km PM2.5 inorganic chemical com-
position in China since 2000 via deep learning integrating ground,
satellite, and model data. Environ. Sci. Technol. 57,
18282–18295 (2023).

66. Rodriguez, J. D., Perez, A. & Lozano, J. A. Sensitivity analysis of k-fold
cross validation in prediction error estimation. IEEE Trans. Pattern
Anal. Mach. Intell. 32, 569–575 (2010).

67. Meyer, H., Reudenbach, C., Hengl, T., Katurji, M. & Nauss, T.
Improving performance of spatio-temporal machine learning
models using forward feature selection and target-oriented vali-
dation. Environ. Model. Softw. 101, 1–9 (2018).

68. Childs, M. L. et al. Daily local-level estimates of ambient wildfire
smoke PM2.5 for the contiguous US. Environ. Sci. Technol. 56,
13607–13621 (2022).

69. Xue, T. et al. Estimating spatiotemporal variation in ambient ozone
exposure during 2013–2017 using a data-fusionmodel. Environ. Sci.
Technol. 54, 14877–14888 (2020).

70. WHO.Coronavirus Disease (COVID-19) Pandemic. TheWorldHealth
Organization (2020).

71. Hale, T. et al. A global panel database of pandemic policies (Oxford
COVID-19 government response tracker). Nat. Hum. Behav. 5,
529–538 (2021).

72. Goldberg, D. L. et al. Disentangling the impact of the COVID-19
lockdowns on urban NO2 from natural variability. Geophys. Res.
Lett. 47, e2020GL089269 (2020).

Acknowledgements
This work was supported by the NASA Applied Science Programs
80NSSC21K1980 (Z.L.) and80NSSC21K0428 (Ju.W.). TheMODIS algorithm
maintenance program provides support to A.L. The authors greatly thank
Lorena Castro from the University of Iowa for collecting and processing
the OpenAQ data, Tianshu Xu from the Beijing Normal University for col-
lecting relevant data and calculating the health burden, and Maureen
Cribb from the University of Maryland for editing and polishing the paper.

Author contributions
Z.L. and Ji.W. conceived and designed the study. Ji.W. performed the
research and wrote the initial draft of this paper. Z.L., Ji.W., A.L., Ju.W.,
O.D., J.S., L.S., C.L., and T.Z. reviewed and edited the paper. Ju.W.
also provided computing resources and some additional information,
including observational data. S.L. assisted in processing the relevant
data and calculating the exposure results.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43862-3.

Correspondence and requests for materials should be addressed to
Jing Wei or Zhanqing Li.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43862-3

Nature Communications |         (2023) 14:8349 11

https://doi.org/10.24380/dObn-kx24316
https://doi.org/10.24380/dObn-kx24316
https://doi.org/10.1038/s41467-023-43862-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health�impact
	Results and discussion
	Model validation and uncertainty
	Day-to-day gapless PM2.5 variations
	Daily health-risk exposure to PM2.5 pollution
	Short-term PM2.5 change and mortality�burden
	Benefits of 1-km-resolution daily PM2.5�data
	Strengths and Summary

	Methods
	Big�data
	Air pollution modeling
	Model validation approach
	Short-term exposure risk assessment
	Impact of the COVID-19 lockdown
	Acute mortality burden estimation

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




