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A B S T R A C T   

Exposure to fine particulate matter (PM2.5) can significantly harm human health and increase the risk of death. 
Satellite remote sensing allows for generating spatially continuous PM2.5 data, but current datasets have overall 
low accuracies with coarse spatial resolutions limited by data sources and models. Air pollution levels in China 
have experienced dramatic changes over the past couple of decades. However, country-wide ground-based PM2.5 
records only date back to 2013. To reveal the spatiotemporal variations of PM2.5, long-term and high-spatial- 
resolution aerosol optical depths, generated by the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Multi-Angle implementation of Atmospheric Correction (MAIAC) algorithm, were employed to estimate PM2.5 
concentrations at a 1 km resolution using our proposed Space-Time Extra-Trees (STET) model. Our model can 
capture well variations in PM2.5 concentrations at different spatiotemporal scales, with higher accuracies (i.e., 
cross-validation coefficient of determination, CV-R2 = 0.86–0.90) and stronger predictive powers (i.e., R2 =

0.80–0.82) than previously reported. The resulting PM2.5 dataset for China (i.e., ChinaHighPM2.5) provides the 
longest record (i.e., 2000 to 2018) at a high spatial resolution of 1 km, enabling the study of PM2.5 variation 
patterns at different scales. In most places, PM2.5 concentrations showed increasing trends around 2007 and 
remained high until 2013, after which they declined substantially, thanks to a series of government actions 
combating air pollution in China. While nationwide PM2.5 concentrations have decreased by 0.89 μg/m3/yr (p <
0.001) during the last two decades, the reduction has accelerated to 4.08 μg/m3/yr (p < 0.001) over the last six 
years, indicating a significant improvement in air quality. Large improvements occurred in the Pearl and Yangtze 
River Deltas, while the most polluted region remained the North China Plain, especially in winter. The China
HighPM2.5 dataset will enable more insightful analyses regarding the causes and attribution of pollution over 
medium- or small-scale areas.   

1. Introduction 

In 2016, more than 92% of the world’s population lived in areas 
experiencing pollution levels exceeding national acceptable limits. Air 
pollution has become one of the major environmental risks affecting 
human health and can raise the risk of death, respiratory diseases, and 
cardiovascular diseases (Brauer et al., 2012; Cohen et al., 2017; Liu 
et al., 2019a; Wei et al., 2019a, 2019b). About three million deaths per 
year are related to exposure to outdoor air pollution. In particular, fine 

particulate matter (i.e., PM2.5) has become the fifth leading lethal risk 
around the world. Long-term exposure to PM2.5 has resulted in 4.2 
million deaths, accounting for 7.6% of deaths in 2015 globally and 59% 
of deaths in eastern and southern Asia, especially China (Beelen et al., 
2014; Cohen et al., 2017; Song et al., 2019; Sun et al., 2016). PM2.5 
pollution has thus become a great concern to the public. 

Since the start of the twentieth century, the Chinese government has 
implemented a large number of policies to both promote the national 
economy and improve air quality. The Five-Year Plan (FYP) was 
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designed for economic and social development and has been imple
mented every five years since 1953 in China. The latest FYPs include the 
10th FYP (2001–2005), the 11th FYP (2006–2010), the 12th FYP 
(2011–2015), and the current (13th) FYP (2016–2020). In 2008, Beijing 
strengthened its environmental management and protection to prepare 
for the Olympic Games (Du and Mendelsohn, 2011; Shen et al., 2011), 
after which China continuously maintained regional air pollution con
trol measures (Yana et al., 2016). In 2013, the national government had 
implemented the five-year Action Plan on Air Pollution Prevention and 
Control with the aim to significantly reduce PM2.5 pollution from 2013 
to 2017 in China, especially in key urban agglomerations (Zhang et al., 
2019a). In 2018, the national government rolled out a three-year Blue- 
Sky Defense (2018–2020) action plan to significantly reduce total major 
air pollutant emissions, with the aim to enhance the quality of life for the 
general public. 

Over the years, remote sensing technology has been widely applied 
in estimating spatially continuous near-surface PM2.5 concentrations. 
Aerosol optical depth (AOD) products generated from multi-source 
satellites, e.g., the Moderate-resolution Imaging Spectroradiometer 
(MODIS; Ma et al., 2014; Wei et al., 2019, 2020), the Visible infrared 
Imaging Radiometer (VIIRS; Yao et al., 2019), and Himawari-8 (Zhang 
et al., 2019c; Su et al., 2020), have been employed as the most critical 
independent variable to derive PM2.5 concentrations due to their 
strongly positive relationships (Guo et al., 2009; van Donkelaar et al., 
2006). Traditional physical methods have been used to derive daily 
PM2.5 concentrations by calculating the fine-mode fraction and cor
recting for humidity and altitude, but these PM2.5 estimates were poorly 
correlated with surface measurements (Yan et al., 2017; Zhang and Li, 
2015). Statistical regression methods, e.g., the linear mixed-effect 
method (LME; Ma et al., 2014) and geographically weighted regres
sion (GWR; Yu et al., 2017), were selected to improve daily PM2.5 esti
mates, achieving increased cross-validation coefficient of determination 
(CV-R2) values. Subsequently, machine or deep-learning methods, e.g., 
random forest, extreme gradient boosting, and deep belief network 

models, were applied to obtain even more accurate daily PM2.5 estimates 
with CV-R2 values greater than 0.8 (Chen et al., 2018; Chen et al., 2019; 
Li et al., 2017b; Wei et al., 2019a). 

PM2.5 is jointly affected by both natural and human conditions, 
leading to complicated varying relationships with AOD, along with 
space and time changes. Traditional physical models cannot identify and 
explain PM2.5-AOD relationships well. Statistical regression models have 
difficulty building stable PM2.5-AOD relationships due to their weak 
data-mining abilities, resulting in poor accuracies of PM2.5 estimates. 
Machine/deep-learning approaches can mine useful information from a 
large amount of input data, but they are always directly applied, usually 
ignoring the essential characteristics of the spatiotemporal heterogene
ity, as well as the direct pollutant emissions in the PM2.5 inversion. More 
importantly, current widely used AOD products are provided at coarse 
spatial resolutions (3–10 km) and show large estimation uncertainties 
over bright surfaces, especially over heterogeneous urban areas (He 
et al., 2017; Li et al., 2019a; Liu et al., 2019b; Wang et al., 2019; Wei 
et al., 2018a, 2018b, 2019c, 2019d). Therefore, the corresponding PM2.5 
estimates are severely limited in application over small-scale areas. 

Previous studies have mainly focused on exploring new approaches 
to improve the overall accuracy of PM2.5 concentrations for those years 
with a sufficient number of measurements from PM2.5 ground moni
toring stations. These models showed skill in estimating PM2.5 for the 
current year, but most did not have an adequate predictive ability to 
generate long-term historical PM2.5 data records. A few studies have 
tried to reconstruct historical PM2.5 data across China using traditional 
approaches. However, the PM2.5 predictions were less accurate with 
overall low accuracies (R2 = 0.41–0.55) at coarse spatial resolutions due 
to the limitations of the models themselves and data sources (Hammer 
et al., 2020; Lin et al., 2018; Ma et al., 2016; Xue et al., 2019). More 
accurate methods that improve the prediction accuracy of PM2.5 con
centrations are thus needed to construct a historical PM2.5 dataset. This 
would make up for the gap in studies on PM2.5 variations across China. 
Therefore, long-term time series and high-quality PM2.5 datasets are 

Fig. 1. Spatial distribution of ground PM2.5 monitoring stations in 2013 (purple dots) and newly established monitoring stations in 2018 (red dots), and AERONET 
AOD monitoring stations (green dots) across China. Background colors indicate the surface type. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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urgently needed for future studies on climate change and human health 
(Hong et al., 2019; Li et al., 2017a, b, c, 2019a,b, c; Xue et al., 2019). 

Here, our objective is to develop a more advanced approach to 
improve the overall accuracy of PM2.5 estimates at a higher spatial 
resolution and then reconstruct historical PM2.5 data for China. For this 
purpose, our proposed tree-based ensemble Space-Time Extra-Trees 
(STET) model (Wei et al., 2020) is adopted here to retrieve PM2.5 con
centrations. The 1 km MODIS Multi-Angle implementation of Atmo
spheric Correction (MAIAC) aerosol product (MCD19A2), newly 
released in May 2018 (Lyapustin et al., 2018), is used in this study. 
Ancillary information on meteorological variables, land use, pollutant 
emissions, and population are involved in the model to improve PM2.5- 
AOD relationships. Based on this, we produce for the first time a high- 
resolution and high-quality PM2.5 dataset for China (i.e., China
HighPM2.5), reconstructing the period from 2000 to 2018. We also 
perform a comprehensive investigation of spatiotemporal PM2.5 varia
tions across China. 

2. Materials and methods 

2.1. Data sources and integration 

2.1.1. In situ PM2.5 data 
Hourly PM2.5 in situ observations from 2013 to 2018 were obtained 

from the China National Environmental Monitoring Center. They are 
measured using the tapered element oscillating microbalance (TEOM) or 
the β-attenuation method with a precision of ±1.5 or 0.1 μg/m3, 
respectively (Xin et al., 2015). For air pollution monitoring, the number 
of observation stations has increased across China, going from 835 in 
2013 to up to 1583 by the end of 2018 (Fig. 1). These stations are 
roughly evenly distributed throughout China and cover most natural 
and human conditions, especially in eastern China (~1289 stations) 
with a high concentration of industrial activities. In addition, there are 
168, 184, 95, and 107 monitoring stations located in the Beijing-Tianjin- 
Hebei (BTH) region (113.1◦E–120.1◦E, 35.8◦N–42.9◦N), the Yangtze 
River Delta (YRD) region (117.2◦E–122.9◦E, 28.5◦N–33.5◦N), the Pearl 
River Delta (PRD) region (110.7◦E–116.5◦E, 20.8◦N–25.8◦N), and the 
Sichuan Basin (SCB) region (102.6◦E–108.4◦E, 27.7◦N–32.6◦N), 
respectively. In this study, problematic or singular values caused by 
instrument malfunction and calibration were first excluded (Guo et al., 
2009). Daily PM2.5 values were then averaged from valid hourly ob
servations for each year at each monitoring station in China. 

2.1.2. MAIAC AOD products 
The MODIS Collection 6 MAIAC AOD product (MCD19A2) at a 1 km 

resolution (Lyapustin et al., 2018) was used as the most important 
predictor of PM2.5. Both Terra and Aqua MAIAC daily gridded AOD 
products covering mainland China were collected from 24 February 
2000 for Terra and 4 May 2002 for Aqua, to 31 December 2018. The 
MAIAC 1 km AOD retrievals were validated against the Aerosol Robotic 
Network (AERONET) AOD measurements collected at 38 monitoring 
stations (Fig. 1) using the spatiotemporal matching method (Wei et al., 
2019c), and compared with the widely used MODIS 10 km Dark Target 
(DT), Deep Blue (DB), and combined DT and DB (DTB) AOD retrievals 
from 2000 to 2018 in China (Fig. S1). The MAIAC AODs are highly 
consistent with the AERONET AODs (correlation coefficient, R = 0.943), 
with a mean absolute error (MAE) of 0.081, a root-mean-square error 
(RMSE) of 0.148, and ~ 81% of the data samples falling within the 
expected error window [± (0.05 + 20%)]. More importantly, the 
number of retrievals is 1.5–2.6 times more, and the spatial resolution is 
3–10 times higher than the widely used MODIS DT, DB, and DTB 
products in China. Other studies have also reported the same conclu
sions (Liu et al., 2019b; Tao et al., 2019; Wei et al., 2019c; Zhang et al., 
2019b). Therefore, the most accurate, highest resolution, and widest 
coverage MODIS MAIAC AOD products were employed in our study. 
Both Terra and Aqua MAIAC AOD products were also averaged and 

combined to further expand the spatial coverage so that more complete 
PM2.5 maps of China can be generated (Wei et al., 2020). 

2.1.3. Auxiliary data 
Auxiliary data, including meteorological variables, surface condi

tions, pollutant emissions, and population distributions, potentially 
affecting PM2.5 concentrations, were collected to improve PM2.5-AOD 
relationships in China. In this study, several main meteorological vari
ables, including temperature (TEM), relative humidity (RH), precipita
tion (PRE), evaporation (ET), surface pressure (SP), wind speed (WS), 
and wind direction (WD), were extracted from the ERA-Interim rean
alysis (Dee et al., 2011). ERA-Interim boundary layer heights (BLH), 
generally consistent (R = 0.8) with those from radiosonde observations 
in China (Guo et al., 2016), are employed to account for aerosol vertical 
distributions. ERA-Interim products provide meteorological information 
from 1979 onward every 3 to 6 h at a spatial resolution of up to 0.125◦ ×

0.125◦. More importantly, they have been shown to be more reliable 
than many other atmospheric reanalysis products in China (Zhou and 
Wang 2016; Zhou et al., 2018). 

The MODIS 1 km monthly Normalized Difference Vegetation Index 
(NDVI) product, the 500 m annual land-use cover (LUC) product, and 
the Shuttle Radar Topography Mission (SRTM) 90 m Digital Elevation 
Model (DEM) were also collected to reflect the current state of and 
change in the earth’s surface. Multi-resolution Emission Inventory for 
China (MEIC) emissions, including aerosol precursors (i.e., NH3, NOx, 
and SO2) and fine-sized particles (PM), generated from climate and 
chemical transport models at a spatial resolution of 0.25◦ × 0.25◦ on a 
monthly basis, were selected to describe PM2.5 compositions and vari
ations in China (Li et al., 2017c; Zhang et al., 2007). In addition, the 1 
km annual LandScan™ population distribution (POP) product was 
selected to represent the population distribution in China (Dobson et al., 
2000). Table S1 provides detailed information and access addresses of 
all data sources used in our study. Finally, all the above-mentioned in
dependent variables were resampled to a uniform 1 km resolution. 

2.2. Space-Time Extra-Trees model 

Different from traditional decision trees and random forests, a tree- 
based ensemble learning approach, i.e., extremely randomized trees 
(extra-trees, Geurts et al., 2006), was selected for this study. The extra- 
trees model yields stronger selection randomness in features, parame
ters, models, and splits than other tree-based machine learning ap
proaches, e.g., decision tree, random forest, and gradient boosting. The 
extra-trees model used in our study mainly consists of four steps:  

1) Sample selection. Given the original data set D, the sample size N, 
and the feature number M, all data samples are used for model 
training in each base classifier in the classification model of extra- 
trees;  

2) Feature selection. To enhance the randomness, m features are 
randomly selected from M features when each node is split, and the 
optimal feature is selected for node splitting at each node without 
pruning;  

3) Extra-tree construction. The split sample subsets repeat Step (2) until 
a decision tree is generated according to the Classification And 
Regression Tree (CART) algorithm. Then repeat Steps (1) and (2) for 
K iterations to generate K decision trees. Finally, the extra-trees are 
built;  

4) Final result output. The extra-trees are used to generate prediction 
results with test samples, and the prediction results of all base clas
sifiers are counted. The final result is determined based on the 
average value of the outputs of all decision trees. 

Geurts et al., (2006) provided a detailed description of the extra-trees 
algorithm. For the feature selection, the model is optimized by selecting 
more important variables to overcome the overfitting issue from using 

J. Wei et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 252 (2021) 112136

4

redundant input variables. This can also both improve the overall ac
curacy and operational efficiency of the model. Therefore, the optimal 
combination of features is determined through a two-stage model 
training. In the first stage of model training, all the above-mentioned 
independent variables are input into the model. The more important 
features are selected according to the importance score calculated using 
the Gini Index (Jiang et al., 2009) when the model training is finished. 
Note that this score only represents the importance of each variable to 
the PM2.5 estimation in the extra-trees generation and does not represent 
the physical contributions. 

Results show that the AOD is the most crucial indicator with the 
largest importance score of ~31% (Fig. S2). Seven meteorological var
iables (i.e., BLH, ET, TEM, RH, SP, WS, and WD) have noticeable effects 
on the PM2.5 estimation. Two main land surface variables, i.e., DEM and 
NDVI, and two main emission variables, i.e., NH3 and PM, are also 
important. The remaining five variables are less important with small 
importance scores (< 2%) and excluded. Therefore, these 12 more 
important variables are used as inputs to the extra-trees model for re- 
training to establish robust PM2.5-AOD relationships in the second stage. 

Due to the spatiotemporal heterogeneity in PM2.5 distributions and 
variations, spatial and temporal information that most previous studies 
have neglected are introduced into the extra-trees model, and we thus 
refer to it as the Space-Time Extra-Trees (STET) model (Wei et al., 2020). 
Different from our previous study, the determination of spatiotemporal 
information is further improved. The space term is refined to include the 
longitude, latitude, and five Haversine distances of one point to the 
upper-left (D1), upper-right (D2), lower-left (D3), and lower-right (D4) 
corners, and the center (D5) of the circumscribed rectangle of the study 
area, and the time term is simplified, represented by the day of the year 
(Tn). They are used to comprehensively describe the geolocation and 
mark the temporal difference of a given pixel point on a sphere, 
respectively. Lastly, the STET model is used to generate a high- 
resolution (1 km) and high-quality PM2.5 dataset for China (i.e., Chi
naHighPM2.5) over most of the period covered by Terra and Aqua 
MODIS measurements, i.e., 2000 to 2018. Fig. 2 shows the flowchart of 
the production of the ChinaHighPM2.5 dataset in this study. 

2.3. Evaluation and analysis methods 

The model performance was evaluated using the widely used 10-fold 
cross-validation (CV) approach (Rodriguez et al., 2010). Training and 
validation of the model were conducted over the period when the bulk of 
ground-based measurements of PM2.5 began in 2013. For the spatial 
analysis, monthly, seasonal, and annual mean PM2.5 data were gener
ated from daily PM2.5 values for each grid cell using our previous data 
synthesis method (Wei et al., 2020). The spatial coverage of PM2.5 maps 
across China was calculated using the area-weighting approach by 
multiplying the cosine of latitude to minimize the effects of the earth’s 
curvature. For the analysis of temporal variations, monthly mean PM2.5 
concentrations were first deseasonalized by calculating the monthly 
anomalies to minimize the effects of the annual cycle. The linear trends 
were then derived from deseasonalized monthly PM2.5 anomalies using 

Fig. 2. Flowchart of the production of the ChinaHighPM2.5 dataset in this study.  

Table 1 
Summary of the ChinaHighPM2.5 dataset.  

Parameter ChinaHighPM2.5 dataset 

Domain [73.6◦E, 134.8◦E], [15.8oN, 53.7oN] 
Data level Level 2 Level 3 
Temporal resolution Daily Monthly Seasonal Annual 
Temporal range 2013–2018 March 2000 to December 2018 
Spatial resolution 0.01◦ × 0.01◦ (≈ 1 km × 1 km) 
Valid range [0,1000] 
Fill value − 999 
Units μg/m3 

Data type Float 
Creation date ISO-8601 
Data format NetCDF (.nc filename extension)  
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the ordinary least-squares-fitting approach, and the statistical signifi
cance of the linear trends was validated using the two-tailed test (Wei 
et al., 2019e). 

3. Results and discussion 

3.1. ChinaHighPM2.5 dataset 

Applying the STET model to the large volume of input datasets, we 
reconstructed the historical high-resolution (1 km) and high-quality 
PM2.5 product in China, i.e., ChinaHighPM2.5 (released on 12 
November 2019). Table 1 and Fig. S3 summarize the main features and 
provide an example of the NetCDF file contents, respectively, of the 
dataset. The ChinaHighPM2.5 dataset is arguably the first high-spatial- 
resolution (i.e., 1 km), longest-term (i.e., 2000–2018) dataset with 
relatively high accuracy across mainland China (74◦E–135◦E, 
16◦N–54◦N). Per our inventory of previous similar related studies 
(Table S2), their PM2.5 products cover much shorter periods (mostly one 
to two years), lower accuracies (mostly CV-R2 < 0.8), and much coarser 
resolutions (3–10 km). This ChinaHighPM2.5 dataset includes daily data 
from 1 January 2013 to 31 December 2018, and monthly data from 
March 2000 to December 2018. Seasonal and annual PM2.5 data were 
also synthesized and provided from 2000 to 2018. Note that this dataset 
is being continuously updated. 

3.2. Evaluation of model performance 

3.2.1. Overall accuracy 
Fig. 3 shows the overall CV results of all daily PM2.5 estimates from 

all monitoring stations for each year in mainland China. Thanks to the 
rapid expansion of the PM2.5 observation network across China, the data 
volume used in our study has increased dramatically (from 79,146 
samples in 2013 to 178,446 samples in 2017). In general, daily PM2.5 
estimates derived from the STET model agree well with ground-based 
PM2.5 measurements (i.e., CV-R2 = 0.86–0.90), with average RMSE 
and MAE values ranging from ~10.0 to 18.4 μg/m3 and ~ 6.4 to 11.5 
μg/m3, respectively, among different years at the national scale. Most 
data samples are evenly scattered around the 1:1 line, with strong slopes 
(~0.83–0.89) and small intercepts (~5.9–10.0 μg/m3), especially for 
the range with the largest data density (~0–150 μg/m3). Furthermore, 
the STET model shows superior performance in PM2.5 estimates 
compared to most models developed in previous studies for the same 
study period focused on China (Table S2). However, the estimation 
uncertainty (e.g., RMSE and MAE) of PM2.5 decreased overall over the 
years, mainly because of the decreasing numerical ranges of data sam
ples due to the improved air quality, and the increasing number of PM2.5 
ground monitoring stations in recent years in China. 

While the accuracy of our PM2.5 product is arguably the highest 
among peer products (Table S2), it still suffers from considerable un
certainties due to some inherent limitations, especially concerning 
aerosol vertical distributions. The BLH is the sole factor linking aerosol 

Fig. 3. Density scatterplots of cross-validation results of daily PM2.5 estimates for each year from 2013 to 2018 across China. Dashed lines denote 1:1 lines, and solid 
lines denote best-fit lines from linear regression. The sample size (N), coefficient of determination (R2), root-mean-square error (RMSE), and mean absolute error 
(MAE) are also given. Units for RMSE and MAE are μg/m3. 
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column loading, denoted by the AOD, with surface PM2.5 concentra
tions. Information on aerosol vertical distributions is critical to AOD- 
PM2.5 relationships, especially for regions away from the sources of 
aerosol emissions (Toth et al., 2014, 2019). To account for the aerosol 
vertical distribution, we attempted to incorporate the Cloud-Aerosol 
Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) 
monthly climatology of aerosol vertical profiles, noting that the 
instantaneous product has too sparse a coverage. It turns out to have 
little impact on the retrieval accuracy (Table S3) due to other inherent 
errors suffered by the CALIPSO (Misra et al., 2012; Pappalardo et al., 
2010; Wu et al., 2014). 

We also performed an uncertainty analysis of PM2.5 estimates from 

our STET model by varying the uncertainty of AOD as well as other 
variables from 1% to ~20% based on the validation results of the MAIAC 
AOD product in China. Fig. S4 presents the absolute mean relative errors 
of PM2.5 estimates incurred by the uncertainties of the input parameters. 
In general, our model is most sensitive to AOD, and a 1% estimation 
error in AOD can lead to a ~ 0.27% estimation error in PM2.5. By 
contrast, the model is less sensitive to other parameters, as denoted by 
the different slopes ranging from 0.01 to 0.05. The uncertainty analyses 
suggest that our model is relatively stable and robust, benefitting from 
the strong anti-noise ability of ensemble learning approaches (Breiman 
2001; Geurts et al., 2006). 

Fig. 4. Spatial distributions of the cross-validation coefficient of determination (CV-R2) of daily PM2.5 estimates from 2013 to 2018 at each monitoring station in 
China. Inset figures show the uncertainty (i.e., RMSE, μg/m3) of PM2.5 estimates. 

Fig. 5. Time series of the cross-validation coefficient of determination (R2, in blue) and uncertainty (i.e., root-mean-square error, or RMSE, in red) of daily PM2.5 
estimates as a function of the day of year from 2013 to 2018 across China. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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3.2.2. Spatiotemporal validation 
Fig. 4 shows the spatial performance of the STET model in PM2.5 

estimates from 2013 to 2018 across China. Here, only those stations with 
at least 10 matchups in each year were plotted and analyzed for statis
tical significance. The spatial patterns of the accuracy of the STET model 
are consistent from 2013 to 2018 across China but are heterogeneous 
with varying CV-R2 values from site to site. The STET model performs 
best in central and eastern China, with most stations having high CV-R2 

values >0.9. By contrast, for several stations located in western China, 
the STET model performs poorly, with low average CV-R2 values <0.4, 
possibly due to poor natural conditions and large estimation un
certainties in AODs (Wei et al., 2018a), as well as aerosol vertical dis
tributions (Toth et al., 2014) over bright surfaces. Estimation errors are 
generally small, with RMSE values <10 μg/m3 at most stations. Large 
estimation errors with RMSE values >20 μg/m3 are observed at several 
stations located in the Xinjiang, Shanxi, and Hebei provinces, likely 
arising from frequent dust events or large amounts of pollutant emis
sions. In general, the average CV-R2 value ranges from 0.82 to 0.87, and 
approximately 77–88% of the stations have CV-R2 values >0.75 from 
2013 to 2018 at the site scale in China. 

Fig. 5 shows the temporal performance of the STET model in PM2.5 
estimates at all monitoring stations as a function of the day of the year 
from 2013 to 2018 in China. Those days with less than 30 matchups for 
each year were not considered for statistical significance. The perfor
mance of our model is similar in each year from 2013 to 2018, with 
mean CV-R2 values ranging from 0.75 to 0.79 on most days. Although 
CV-R2 values were below 0.5 on some days, approximately 72–84% of 
the days have CV-R2 values >0.7 from 2013 to 2018 in China. However, 
the uncertainty has an overall concave-upward parabolic trend in each 
year, with larger RMSE values >20 μg/m3 in winter and smaller RMSE 

values <10 μg/m3 in summer, grossly proportional to the annual vari
ation in the overall pollution level driven by emissions and depositions 
(Su et al., 2018, 2020). In general, the STET model can well capture 
daily PM2.5 variations, with small estimation errors throughout the year 
in China. 

We also compared the monthly, seasonal, and annual synthetic PM2.5 
estimates with ground-based measurements (Fig. 6). The monthly PM2.5 
estimates are highly consistent with surface observations, e.g., R2 

(~0.92–0.94), slopes (~0.89–0.92), RMSE (~5.1–10.0 μg/m3), and 
MAE (~3.7–6.8 μg/m3) among different years from 2013 to 2018 
(Fig. 6a-f). Although the retrieval errors vary year by year, the changes 
are so small that they do not significantly affect the trends. Taking the 
RMSE value as an example, it decreases and changes little, i.e., within 
− 1.5 μg/m3 per year. Furthermore, the seasonal and annual PM2.5 es
timates are also highly consistent with ground measurements, with R2 

values of 0.95 and 0.94, same slope values of 0.92, average RMSEs of 
6.43 μg/m3 and 5.07 μg/m3, and MAEs of 4.55 μg/m3 and 3.72 μg/m3 

from 2013 to 2018, respectively (Fig. 6g-h). These results suggest that 
the ChinaHighPM2.5 product can provide reliable data for monitoring 
the spatial variation and temporal trend in PM2.5 pollution in China. 

3.2.3. Predictive power 
Since there are no monitoring stations before 2013, in this study, 

data from two years with different pollution conditions, were used to 
test the model’s predictive power, i.e., the model built for one year was 
used to forecast PM2.5 concentrations in another year and validated with 
ground measurements made in this year. In addition, four traditional 
models, i.e., multiple linear regression (MLR), LME, GWR, and two-stage 
models, were selected to test their predictive power in estimating PM2.5 
with the same data inputs as used in the STET model. Results show that 

Fig. 6. Comparison of (a-f) monthly, (g) seasonal, and (h) annual synthetic PM2.5 estimates and observations from all monitoring stations for each year from 2013 to 
2018 in China. Dashed lines denote 1:1 lines, and solid lines denote best-fit lines from linear regression. The sample size (N), coefficient of determination (R2), root- 
mean-square error (RMSE), and mean absolute error (MAE) are also given. Units for RMSE and MAE are μg/m3. 
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the STET model can more accurately predict historical PM2.5 data re
cords with small estimation uncertainties at monthly (i.e., R2 = 0.80, 
slope = 0.83, and RMSE = 11.26 μg/m3), seasonal (i.e., R2 = 0.81, slope 
= 0.87, and RMSE = 9.59 μg/m3), and annual (i.e., R2 = 0.82, slope =
0.84, and RMSE = 6.10 μg/m3) scales than can traditional models 
(Table 2). 

A few studies have explored the predictive power of their models in 
estimating historical PM2.5 concentrations, e.g., the two-stage model 
(Ma et al., 2016), Community Multiscale Air Quality (CMAQ) simula
tions (Xue et al., 2019), Machine Learning (ML) or ML + Generalized 
Additive Model (GAM) (Xue et al., 2019), and Space-Time Random 
Forest (STRF, Wei et al., 2019a). Table 2 shows that these models 

predicted historical PM2.5 concentrations poorly at different temporal 
scales (Table 2). Our STET model shows a stronger predictive ability 
with reference to those models developed in previous studies. These 
results suggest that our model can capture historical PM2.5 concentra
tions in China more accurately, useful for reconstructing a long-term 
historical PM2.5 dataset. 

3.3. Spatial coverage and distribution 

3.3.1. National and regional pollution 
Fig. 7 shows annual mean PM2.5 maps (1 km resolution) for each year 

from 2001 to 2018 across China and the multi-year mean PM2.5 map. 

Table 2 
Comparison of the predictive powers of traditional models and the STET model to generate historical PM2.5 concentrations in China.  

Model Monthly Seasonal Year Reference 

R2 Slope RMSE R2 Slope RMSE R2 Slope RMSE 

MLR 0.58 0.46 17.78 0.63 0.49 15.54 0.58 0.50 9.06 This study 
LME 0.66 0.61 15.50 0.72 0.65 13.08 0.64 0.58 8.03 This study 
GWR 0.68 0.63 15.71 0.75 0.67 13.24 0.75 0.75 7.64 This study 
Two-stage 0.73 0.68 14.08 0.79 0.73 11.58 0.78 0.74 6.80 This study 
Two-stage 0.73 – – 0.79 – – – – – Ma et al., 2016 
CMAQ 0.54 0.85 26.40 – – – 0.53 1.00 19.70 Xue et al., 2019 
ML 0.69 0.66 18.60 – – – 0.75 0.71 10.60 
ML + GAM 0.71 0.68 19.00 – – – 0.77 0.74 10.10 
STRF 0.73 0.65 14.88 0.78 0.70 11.42 0.79 0.72 8.08 Wei et al., 2019a 
STET 0.80 0.83 11.26 0.81 0.87 9.59 0.82 0.84 6.10 This study 

CMAQ: Community Multiscale Air Quality; GAM: generalized additive model; GWR: geographically weighted regression; LME: linear mixed-effect; ML: machine 
learning; MLR: multiple linear regression; STET: space-time extra-trees; STRF: space-time random forest. 

Fig. 7. MODIS-derived annual mean 1-km-resolution PM2.5 maps for each year from 2001 to 2018 in China.  
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The STET model can estimate PM2.5 over more than 98% of the whole of 
China, a much wider spatial coverage than reported in previous studies, 
especially in western China. In general, spatial patterns are consistent 
among different years, where the highest PM2.5 values are found over 
Beijing, Tianjin, Hebei, Shaanxi, Henan, Shandong, Sichuan, and Xin
jiang provinces, mainly due to intensive human activities, unique 
topographic conditions, and frequent dust events. PM2.5 values are 
overall low in other areas, especially southwest and northeast China. 
Multi-year mean PM2.5 concentrations are 49.4 ± 14.2 μg/m3 for the 
whole of China, and 62.1 ± 22.5 μg/m3, 63.0 ± 11.1 μg/m3, 52.4 ± 5.8 
μg/m3, and 61.6 ± 13.4 μg/m3 for the BTH, YRD, PRD, and SCB regions, 
respectively (Table S4). More importantly, more than 88% of the 
country suffers from a PM2.5 exposure risk, with an annual mean value 
exceeding the national air quality standard (i.e., PM2.5 = 35 μg/m3). 

Fig. 8 illustrates the spatial distributions of seasonal mean PM2.5 
concentration during 2000–2018 across China. The spatial patterns of 
PM2.5 concentration greatly differ at the seasonal level. In summer, 
PM2.5 pollution is the lightest, with most areas in China having PM2.5 
values <40 μg/m3 with an average value of 36.4 ± 10.0 μg/m3, in 
particular, the PRD region (~31.6 ± 6.4 μg/m3). By contrast, PM2.5 
pollution is the most severe in winter, with much of China having PM2.5 
values >50 μg/m3 (average = 63.6 ± 21.4 μg/m3), in particular, the 
BTH (~81.0 ± 35.1 μg/m3), YRD (~82.2 ± 14.6 μg/m3), and SCB 
(~88.5 ± 24.1 μg/m3) regions (Table S4). Except for Xinjiang province, 
where dust events frequently occur, spring and autumn have similar 
spatial patterns and pollution levels from regional to national scales. 
However, 85–93% of China’s expanse still exceeds the minimum 
acceptable air quality standard. 

3.3.2. City-level pollution 
Due to its high spatial resolution, the ChinaHighPM2.5 dataset allows 

for the examination of PM2.5 pollution at the city level. Fig. 9 shows 
zoom-in PM2.5 maps from 2000 to 2018 and the corresponding land-use- 
cover map for central China. In general, PM2.5 pollution is closely related 
to the land-use cover, where PM2.5 concentrations are >80 μg/m3 in 
main urban and built-up areas (red colour in Fig. 9f) and croplands 
(yellow colour in Fig. 9f) due to more anthropogenic aerosols (e.g., 
pollutant emissions, coal, and agricultural burning), especially in 
winter. PM2.5 pollution is generally <40 μg/m3 in forests and grasslands 
with abundant vegetation cover and sparse human activities. These 
findings illustrate that this new 1-km-resolution PM2.5 data is useful for 
studying air pollution in urban areas. 

The frequency histograms of PM2.5 concentration based on data from 
382 prefecture-level cities in China (Fig. S5) for different study periods 
and at different temporal scales are plotted in Fig. S6. PM2.5 values range 
from 10 to 140 μg/m3 at the city level among the different periods. 
67–73% and 91–97% of the cities are exposed to moderate PM2.5 
pollution levels (~40–80 μg/m3) and exceed the acceptable air quality 
standard, respectively, during the entire and first three periods. On the 
contrary, most cities in China from 2016 to 2018 have PM2.5 values <60 
μg/m3, and more than half of the cities (~57%) meet the acceptable air 
quality standard. Also seen are large differences at the city level on 
annual and seasonal scales. Most cities have similar PM2.5 distributions, 
with ~90–95% of them having pollution levels exceeding the acceptable 
air quality standard on an annual scale and in spring and autumn. The 
lowest PM2.5 pollution level is found in most cities in summer, with 
~63% of them having pollution levels meeting the acceptable air quality 

Fig. 8. MODIS-derived seasonal mean 1-km-resolution PM2.5 maps averaged over the period 2000–2018.  
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Fig. 9. Zoom-in maps of (a) annual and (b-e) seasonal mean 1-km-resolution PM2.5 maps averaged over the period 2000–2018, and (f) land-use type at the city level 
over central China, where black and pink lines represent provincial and city boundaries, respectively. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 10. Spatial distribution of linear PM2.5 trends (μg/m3/yr) from 2001 to 2018 in China, where the green areas in the inset figure represent trends that are 
significant at the 95% (p < 0.05) confidence level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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standard. Most cities are exposed to the highest PM2.5 pollution levels in 
winter, with only 2% of the cities having pollution levels meeting the 
acceptable air quality standard. More importantly, ~32% of the cities 
face severe PM2.5 pollutions (PM2.5 > 80 μg/m3). 

3.4. Long-term variation and trend 

3.4.1. National and regional trends 
This section focuses on exploring historical spatiotemporal varia

tions in PM2.5 pollution across mainland China. Fig. 10 plots the linear 
PM2.5 trends from 2001 to 2018 in China, and Table 3 summarizes the 
statistical results. PM2.5 pollution has significantly changed (p < 0.05) 

over almost all of China’s expanse from 2001 to 2018, with an average 
PM2.5 trend of − 0.89 μg/m3/yr (p < 0.001). The variation trend of PM2.5 
shows a pronounced geographic dependence. For example, the North 
China Plain has a decreasing PM2.5 trend of >1.5 μg/m3/yr (p < 0.05). 
Likewise, there are significant downward trends over the BTH (~ −
1.09 μg/m3/yr, p < 0.001), YRD (~ − 1.24 μg/m3/yr, p < 0.001), PRD 
(~ − 0.91 μg/m3/yr, p < 0.001), and SCB (~ − 1.46 μg/m3/yr, p <
0.001) regions from 2001 to 2018. By contrast, the Taklimakan Desert in 
Xinjiang province shows a significant increasing PM2.5 trend (p < 0.05). 
There are some areas in southwestern China showing increasing trends 
in PM2.5 concentration, but these trends are not statistically significant. 

Fig. 11 shows seasonal PM2.5 trends from 2000 to 2018 across China. 

Table 3 
Statistics of annual and seasonal PM2.5 trends (μg/m3/yr) and their significance levels (p) from 2000 to 2018 across China, in eastern China (ECHN), and four typical 
regions.  

Region Annual Spring Summer Autumn Winter 

Trend p Trend p Trend p Trend p Trend p 

China − 0.89 < 0.001 − 0.95 < 0.001 − 0.89 < 0.001 − 0.72 < 0.05 − 0.67 < 0.05 
ECHN − 1.09 < 0.001 − 1.13 < 0.001 − 0.99 < 0.001 − 0.85 < 0.05 − 0.82 0.11 
BTH − 1.09 < 0.001 − 1.12 < 0.001 − 1.19 < 0.01 − 0.85 < 0.05 − 0.71 0.23 
YRD − 1.24 < 0.001 − 1.26 < 0.001 − 1.03 < 0.01 − 1.11 < 0.01 − 0.94 0.13 
PRD − 0.91 < 0.001 − 0.66 0.13 − 0.53 < 0.01 − 0.79 0.087 − 0.53 0.23 
SCB − 1.46 < 0.001 − 1.13 < 0.05 − 0.98 < 0.01 − 1.20 < 0.01 − 1.32 0.07 

BTH: Beijing-Tianjin-Hebei; PRD: Pearl River Delta; SCB: Sichuan Basin; YRD: Yangtze River Delta. 

Fig. 11. Spatial distributions of seasonal PM2.5 trends (μg/m3/yr) from 2000 to 2018 across China, where the green areas in the inset figures represent trends that are 
significant at the 95% (p < 0.05) confidence level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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PM2.5 pollution has significantly decreased with an average trend of 
− 0.95 (p < 0.001), − 0.89 (p < 0.001), − 0.72 (p < 0.05), and − 0.67 (p 
< 0.05) μg/m3/yr in spring, summer, autumn, and winter, respectively 
(Table 3). However, there are differences in the seasonal variations at 
the regional level. In general, spring and summer have trends with 
similar spatial distributions across China. Except for southern and 
western China, the other regions show significant decreasing trends, 
especially the BTH, YRD, and SCB regions (< − 1 μg/m3/yr, p < 0.05). In 
autumn, central, southeast, and southwest China are areas where PM2.5 
significantly changed, although the change is much less than the 
changes during spring and summer. Most of China’s areas show overall 
decreasing PM2.5 trends in winter, especially for some cities, e.g., Beijing 
and Tianjin (< − 2 μg/m3/yr, p < 0.05). In Xinjiang province, overall 
increasing PM2.5 trends are seen in all seasons, especially in the Tarim 
Basin in spring (> 1 μg/m3/yr, p < 0.05), possibly suggesting an 
increasing number of sandstorms. 

However, the increasing and decreasing trends could be offset over 
the long term, considering the watershed of around 2007 or 2008 when 
trends in most parts of China changed from increasing to decreasing. 
Considering major historical events that had a strong bearing on air 
quality in China (i.e., the Olympic Games and the Action Plan), our trend 
analyses are first divided into three periods to gauge their impact on 
national and regional PM2.5 pollution. Fig. 12 shows the time series of 
monthly PM2.5 anomalies from 2001 to 2018 over China, eastern China, 
and four typical regions. PM2.5 concentrations have an annual cycle, i.e., 
the maximum PM2.5 value is observed around January, and the mini
mum PM2.5 value is observed in July in any given year. In the early 
period of our study (2001–2007), PM2.5 had significantly increased by 
0.3 to 1.4 μg/m3/yr (p < 0.05) across China (especially eastern China) 
and the four typical regions. The opposite was the case thereafter 
(2008–2012) for all regions but the BTH, with the sharpest decline in the 
last six years (2013–2018) across China (~ − 4.08 μg/m3/yr, p < 0.001), 
especially in the BTH (~ − 6.23 μg/m3/yr, p < 0.001), YRD (~ − 6.00 

μg/m3/yr, p < 0.001), and SCB (~ − 6.55 μg/m3/yr, p < 0.001) regions. 
Furthermore, trends are calculated for different time scales (from 3 

to 18 years) and periods of varying beginning years until the end of 2018 
with varying time lengths across China (Fig. 13). Note that PM2.5 trends 
are different during different periods and for different regions. PM2.5 
pollution shows overall increasing trends before 2010, then significant 
decreasing trends (p < 0.05) since 2012 across China. There is a similar 
pattern in PM2.5 variations in eastern China but with larger values. The 
BTH and YRD regions have more consistent PM2.5 variations. The trends 
are significantly positive (p < 0.05) during the period 2001–2013, and 
smaller and relatively stable in the middle, separate periods, but 
significantly negative after 2013. Overall, PM2.5 concentrations 
increased before 2007 and 2005 in the PRD and SCB regions, respec
tively, then decreased, especially since 2013, when the largest trends 
occurred (p < 0.05). In general, the strongest trends are mainly 
concentrated in the lower-left and lower-right sections of each plot, 
suggesting that the trends can change rapidly over a short period. This 
highlights the importance of investigating spatiotemporal PM2.5 varia
tions to identify “hot spots” of pollution and to understand their causes. 

3.4.2. Relation to government policies 
Although PM2.5 loadings differ from 2001 to 2018 due to the joint 

influence of both natural conditions and human activities, subtle dif
ferences among the years are barely visible (Fig. 7). Therefore, mean 
PM2.5 concentrations were calculated for four typical study periods 
(Fig. 14) and their differences with the mean PM2.5 level from 2001 to 
2018 in China (Fig. S7). The spatial distributions of PM2.5 pollution are 
similar, with small differences over China and typical regions during the 
10th (2001–2005) and 12th (2011–2015) FYP periods (Table S5). 
70–90% of the areas have PM2.5 values that are slightly higher than the 
overall level of PM2.5 pollution during 2001–2018, and 91–96% of the 
areas have PM2.5 values exceeding the national air quality standard. 
During the 11th FYP (2006–2010), China experienced the most severe 

Fig. 12. Time series of monthly PM2.5 anomalies from 2001 to 2018 over (a) the whole of China, (b) eastern China, and (c-f) four typical regions. The different 
colored lines are the trend lines for different periods, where *, **, and *** represent trends that are significant at the 95% (p < 0.05), 99% (p < 0.01), and 99.9% (p <
0.001) confidence levels, respectively. 
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PM2.5 pollution levels, with the highest mean PM2.5 concentrations in 
most regions. Approximately 95% and 94% of the areas exceeded the 
average level and the air quality standard, especially the North China 
Plain and SCB, with larger differences >10 μg/m3. 

By contrast, during 2016–2018, PM2.5 pollution was at its lowest, 
with the lowest mean PM2.5 values and the largest differences with the 
overall average PM2.5 concentration. More than 95% of the areas have 
PM2.5 concentrations that are lower than the overall average PM2.5 
concentration during 2001–2018, and 56% of the areas have PM2.5 
values below the national air quality standard. In general, PM2.5 con
centrations were high across China during the first few years and peaked 
around 2007, gradually decreasing to an overall low level in recent years 
(Fig. S8). The 2008 Olympic Games were, arguably, the major starting 
point in this turnaround due to the strong actions taken aimed at 
reducing pollution emissions prior to the Games (Du and Mendelsohn 
2011; Shen et al., 2011). 

Fig. 15 shows the spatiotemporal PM2.5 variations across China for 
different government policy periods. PM2.5 concentrations increased 
significantly over eastern China (~1.02 μg/m3/yr, p < 0.05) during the 
10th FYP (2001–2005), especially over the YRD (~0.93 μg/m3/yr, p <
0.05) and PRD (~1.36 μg/m3/yr, p < 0.05) regions (Table 4). This was 
mainly due to the significant growth of the economy with an increasing 
gross domestic product rate of 13% per year, but without considering 
environmental protection. During the 11th FYP (2006–2010), however, 
most areas showed overall weak decreasing PM2.5 trends in China (~ −
0.29 μg/m3/yr, p = 0.24) when pollution prevention measures began to 
take effect. These measures involved reforming industrial and energy 
structures at a time when the economic growth slowed somewhat but 
was still at a high rate of 11.2%. 

During the 12th FYP (2011–2015), the air quality improved much 
more significantly across China (~ − 2.70 μg/m3/yr, p < 0.001), 

especially in the YRD (~ − 4.33 μg/m3/yr, p < 0.001) and SCB (~ −
5.24 μg/m3/yr, p < 0.001) regions, when more intensified adjustment 
and optimization of industrial and energy consumption structures took 
place, aiming at a more dramatic reduction in main pollution emissions, 
especially in key areas such as the BTH, PRD, and YRD regions. More
over, the Qinghai Tibet Plateau also showed significant downward PM2.5 
trends (~ − 6 μg/m3/yr, p < 0.05), which may not be not reliable, given 
the scarcity of monitoring stations. During the current FYP 
(2016–2020), PM2.5 pollution has continued to decrease by 4.26 μg/m3/ 
yr (p < 0.001) across China from 2016 to 2018, especially in eastern 
China (~ − 3.07 μg/m3/yr, p < 0.001), and the BTH (~ − 4.78 μg/m3/ 
yr, p < 0.01) and YRD (~ − 4.05 μg/m3/yr, p < 0.01) regions. 
Approximately 40%, 52%, 94%, and 96% of prefecture-level cities 
showed decreasing PM2.5 concentrations during the four FYPs, respec
tively, especially during the twelfth FYP when there was a large 
reduction in PM2.5 (> 20%) at ~75% of the cities in China (Fig. S9). 

During the Action Plan (2013–2017), PM2.5 pollution significantly 
declined over most areas in eastern China (~ − 6.11 μg/m3/yr, p <
0.001), especially the BTH (~ − 6.65 μg/m3/yr, p < 0.001), YRD (~ −
6.51 μg/m3/yr, p < 0.001), PRD (~ − 3.80 μg/m3/yr, p < 0.001), and 
SCB (~ − 8.00 μg/m3/yr, p < 0.001) regions (Table 5). More impor
tantly, the satellite-based trends of PM2.5 pollution derived from the 
STET model are highly consistent (i.e., differences within ± 1.5 μg/m3/ 
yr) with those calculated from ground-based observations on all scales 
from city to regional to national scales in China, further attesting to the 
robustness of our retrievals. Their discrepancies are mainly caused by 
the different spatial coverages of in situ and satellite observations. The 
latter may increase with decreasing density of ground monitoring sta
tions (e.g., the SCB). 

In general, PM2.5 pollution had decreased by 32.7%, 32.5%, 36.3%, 
and 31.5% across China and three key regions (i.e., BTH, YRD, and 

Fig. 13. Temporal PM2.5 trends (μg/m3/yr) derived from deseasonalized monthly anomalies for different periods over China and typical regions, where the x-axis 
represents the start year, and the y-axis represents the time length (in years) since the start year. Black points indicate trends that are significant at the 95% con
fidence level (p < 0.05). 
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Fig. 14. MODIS-derived mean 1-km-resolution PM2.5 maps during the periods (a) 2001–2005, (b) 2006–2010, (c) 2011–2015, and (d) 2016–2018 in China.  

Fig. 15. Spatial distributions of PM2.5 trends (μg/m3/yr) during the periods (a) 2001–2005, (b) 2006–2010, (c) 2011–2015, (d) 2016–2018, (e) 2013–2017, and (f) 
the annual mean PM2.5 map for 2018, where the green areas in the inset figures represent trends that are significant at the 95% (p < 0.05) confidence level. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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PRD), respectively, from 2013 to 2017. These results illustrate that 
China has reached the major goals set by the government regarding 
reducing PM2.5 pollution. Our satellite-based results are also close to the 
official evaluation results based on in situ observations (http://www. 
mee.gov.cn/gkml/sthjbgw/stbgth/201806/t20180601_442262.htm). 
Air quality in Beijing had also improved significantly, with annual mean 
PM2.5 concentrations decreasing from 59.5 ± 17.5 μg/m3 in 2013 to 
42.2 ± 9.6 μg/m3 in 2017, which also exceeded the set goal (i.e., PM2.5 
≈ 60 μg/m3). Moreover, PM2.5 pollution was overall reduced in ~98% of 

prefecture-level cities, with decreases of >20% at more than 89% of 
these cities (Fig. S9). Upgraded industrial structures and enhanced 
emission controls on primary particles and SO2 from industrial enter
prises, including coal consumption, were responsible for this improve
ment in air quality (Li et al., 2019b; Zhang et al., 2019a). 

By the end of the first year of the Blue-Sky Defense (2018), except for 
Xinjiang province and the North China Plain, most areas had overall low 
PM2.5 concentrations across mainland China (average = 32.6 ± 14.1 μg/ 
m3), especially in summer (~25.2 ± 12.4 μg/m3) and winter (~41.4 ±
15.6 μg/m3). PM2.5 concentrations had declined continuously by 
10–16% in three key regions (Table 5), and ~ 70% of China’s expanse 
and 57% of prefecture-level cities (Fig. S6) had PM2.5 concentrations 
that fell below the acceptable national air quality standard. The number 
of clean days (PM2.5 < 35 μg/m3) had also continuously increased, while 
the number of polluted days (PM2.5 > 75 μg/m3) had continuously 
decreased from 2013 to 2018 across China and in some regions, in 
particular, the PRD region. That region had the greatest number of clear 
days (~72%) and almost no high-pollution days (< 1%) in 2018 
(Fig. 16), indicating that China’s air quality had improved significantly. 
However, some regions still experienced high pollution levels, e.g., the 
BTH and YRD regions, requiring further measures to be taken in the 
future. 

4. Summary and conclusions 

Here, a newly developed Space-Time Extra-Trees (STET) model was 
employed to establish robust PM2.5-AOD relationships for mainland 
China by incorporating spatiotemporal information and information 
about surface conditions and human activities. Results show that the 
model is more accurate in estimating current PM2.5 concentrations (e.g., 
cross-validation R2 = 0.86–0.90) and in predicting historical PM2.5 
concentrations (e.g., R2 = 0.80–0.82) across China than most models 
developed in previous studies. This model, for the first time, helped 
reconstruct a high-resolution (1 km) and high-quality PM2.5 dataset for 
mainland China (i.e., the ChinaHighPM2.5 product) from 2000 to 2018. 
The 1 km spatial resolution of the product allows for the analysis of 
PM2.5 exposure and pollution variations from national, regional, to 
urban scales across China. 

Results show that most of mainland China experienced high PM2.5 

Table 4 
Statistics of annual PM2.5 trends (μg/m3/yr) and their significance levels (p) across China and typical regions for different study periods.  

Region Period: 2001–2005 Period: 2006–2010 Period: 2011–2015 Period: 2016–2018 

Trend p Trend p Trend p Trend p 

China 0.19 0.52 − 0.29 0.24 − 2.70 < 0.001 − 4.26 < 0.001 
ECHN 1.02 < 0.05 − 0.44 0.26 − 4.03 < 0.001 − 3.07 < 0.001 
BTH 1.13 0.12 − 1.18 0.08 − 3.72 < 0.01 − 4.78 < 0.01 
YRD 0.93 < 0.05 − 0.05 0.92 − 4.33 < 0.001 − 4.05 < 0.01 
PRD 1.36 < 0.05 − 0.77 0.28 − 2.60 < 0.01 − 2.96 < 0.05 
SCB 1.15 0.17 − 0.30 0.67 − 5.24 < 0.001 − 2.80 < 0.05 

BTH: Beijing-Tianjin-Hebei; ECHN: eastern China; PRD: Pearl River Delta; SCB: Sichuan Basin; YRD: Yangtze River Delta. 

Table 5 
Statistics of annual mean PM2.5 concentrations (μg/m3), temporal trends (μg/m3/yr), and relative change percentages (%) from 2013 to 2018 across China and local 
regions, where *** represent trends that are significant at the 99.9% (p < 0.001) confidence level.  

Region Annual mean PM2.5 concentrations Trend (2013–2017) Decreased by 

2013 2017 2018 Satellite Ground 2013–2017 2017–2018 

China 53.5 ± 16.6 36.0 ± 14.2 32.6 ± 14.1 − 4.13*** − 5.22*** 32.7% 9.4% 
ECHN 60.5 ± 19.4 39.1 ± 11.5 34.6 ± 10.5 − 6.11*** − 5.32*** 35.4% 11.5% 
BTH 66.8 ± 27.6 45.1 ± 14.4 40.7 ± 11.8 − 6.65*** − 6.67*** 32.5% 9.8% 
YRD 67.2 ± 14.4 42.8 ± 8.4 38.1 ± 9.1 − 6.51*** − 6.09*** 36.3% 11.0% 
PRD 55.9 ± 7.9 38.3 ± 5.6 32.0 ± 4.4 − 3.80*** − 2.98*** 31.5% 16.4% 
SCB 72.3 ± 18.4 40.6 ± 11.7 38.4 ± 10.1 − 8.00*** − 6.61*** 43.8% 5.4% 
Beijing 59.5 ± 17.5 42.2 ± 9.6 37.9 ± 7.7 − 5.84*** − 5.43*** 29.1% 10.2% 

BTH: Beijing-Tianjin-Hebei; ECHN: eastern China; PRD: Pearl River Delta; SCB: Sichuan Basin; YRD: Yangtze River Delta. 

Fig. 16. Percentage variations of clear and polluted days when daily mean 
PM2.5 concentrations were (a) below 35 μg/m3 and (b) exceeded 75 μg/m3 from 
2013 to 2018 across China and in four typical regions. 
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exposure risks, especially in winter. However, PM2.5 pollution has 
greatly changed during the last two decades due to the implementation 
of different government policies. PM2.5 concentrations were signifi
cantly increasing before 2008 due to rapid economic development and 
remained relatively stable until 2012. Since 2013, PM2.5 concentrations 
have decreased, benefiting from large-scale air pollution prevention and 
controls in China. This ChinaHighPM2.5 dataset is potentially useful for 
understanding long-term PM2.5 burdens and variations at medium to 
small scales. 

Data availability 

The ChinaHighPM2.5 dataset is open access and freely available to all 
users from https://weijing-rs.github.io/product.html. 
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Ansmann, A., Seifert, P., Linné, H., Apituley, A., Arboledas, L., 2010. EARLINET 
correlative measurements for CALIPSO: first intercomparison results. J. Geophys. 
Res.-Atmos. 115 (D4) https://doi.org/10.1029/2009JD012147. 

Rodriguez, J., Perez, A., Lozano, J., 2010. Sensitivity analysis of k-fold cross validation in 
prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32 (3), 569–575. 

Shen, J., Tang, A., Liu, X., Kopsch-Xhema, J., Fangmeier, A., Goulding, K., 2011. Impacts 
of pollution controls on air quality in Beijing during the 2008 Olympic Games. 
J. Environ. Qual. 40 (1), 37–45. 

Song, Y., Huang, B., He, Q., Chen, B., Wei, J., Mahmood, R., 2019. Dynamic assessment 
of PM2.5 exposure and health risk using remote sensing and geo-spatial big data. 
Environ. Pollut. 253, 288–296. 

Su, T., Laszlo, I., Li, Z., Wei, J., Kalluri, S., 2020. Refining aerosol optical depth retrievals 
over land by constructing the relationship of spectral surface reflectances through 
deep learning: Application to Himawari-8. Remote Sens. Environ. 251, 112093 
https://doi.org/10.1016/j.rse.2020.112093. 

Su, T., Li, Z., Kahn, R., 2018. Relationships between the planetary boundary layer height 
and surface pollutants derived from lidar observations over China: regional pattern 
and influencing factors. Atmos. Chem. Phys. 18 (21), 15,921–15,935. 

Su, T., Li, Z., Kahn, R., 2020. A new method to retrieve the diurnal variability of 
planetary boundary layer height from lidar under different thermodynamic stability 
conditions. Remote Sens. Environ. 237, 111519. 

Sun, L., Wei, J., Duan, D., Guo, Y., Yang, D., Jia, C., Mi, X., 2016. Impact of land-use and 
land-cover change on urban air quality in representative cities of China. J. Atmos. 
Sol. Terr. Phys. 142, 43–54. 

Tao, M., Wang, J., Li, R., Wang, L., Wang, L., Wang, Z., Tao, J., Che, H., Chen, L., 2019. 
Performance of MODIS high-resolution MAIAC aerosol algorithm in China: 
characterization and limitation. Atmos. Environ. 213, 159–169. 

Toth, T., Zhang, J., Campbell, J., Hyer, E., Reid, J., Shi, Y., Westphal, D., 2014. Impact of 
data quality and surface-to-column representativeness on the PM2.5/satellite AOD 
relationship for the contiguous United States. Atmos. Chem. Phys. 14, 6049–6062. 
https://doi.org/10.5194/acp-14-6049-2014. 

J. Wei et al.                                                                                                                                                                                                                                      

https://weijing-rs.github.io/product.html
https://doi.org/10.1016/j.rse.2020.112136
https://doi.org/10.1016/j.rse.2020.112136
https://doi.org/10.1016/S0140-6736(13)62158-3
https://doi.org/10.1016/S0140-6736(13)62158-3
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0015
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0020
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0020
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0020
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0020
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0025
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0025
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0025
https://doi.org/10.1016/S0140-6736(17)30505-6
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0035
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0035
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0035
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0040
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0040
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0045
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0045
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0050
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0050
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0055
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0055
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0055
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0060
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0060
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0060
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf1010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf1010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf1010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf1010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf1010
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0065
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0065
https://doi.org/10.1073/pnas.1812881116
https://doi.org/10.1073/pnas.1812881116
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0075
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0075
https://doi.org/10.1093/nsr/nwx117
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0085
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0085
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0085
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0090
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0090
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0090
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0090
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0090
https://doi.org/10.1038/s41561-019-0464-x
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0100
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0100
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0100
https://doi.org/10.1029/2019JD030758
https://doi.org/10.1029/2019JD030758
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0110
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0110
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0110
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0115
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0115
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0115
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0120
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0120
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0120
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0120
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0125
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0125
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0130
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0130
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0135
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0135
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0135
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0140
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0140
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0140
https://doi.org/10.1029/2009JD012147
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0150
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0150
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0155
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0155
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0155
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0160
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0160
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0160
https://doi.org/10.1016/j.rse.2020.112093
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0165
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0165
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0165
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0170
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0170
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0170
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0175
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0175
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0175
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0180
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0180
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0180
https://doi.org/10.5194/acp-14-6049-2014


Remote Sensing of Environment 252 (2021) 112136

17

Toth, T., Zhang, J., Reid, J., Vaughan, M., 2019. A bulk-mass-modeling-based method for 
retrieving particulate matter pollution using CALIOP observations. Atmos. Measure 
Tech. 12, 1739–1754. https://doi.org/10.5194/amt-12-1739-2019. 

van Donkelaar, A., Martin, R., Park, R., 2006. Estimating ground-level PM2.5 using 
aerosol optical depth determined from satellite remote sensing. J. Geophys. Res.- 
Atmos. 111, D21201 https://doi.org/10.1029/2005JD006996. 

Wang, W., Mao, F., Pan, Z., Gong, W., Yoshida, M., Zou, B., Ma, H., 2019. Evaluating 
aerosol optical depth from Himawari-8 with Sun photometer network. J. Geophys. 
Res.-Atmos. 124 https://doi.org/10.1029/2018JD028599. 

Wei, J., Sun, L., Huang, B., Bilal, M., Zhang, Z., Wang, L., 2018a. Verification, 
improvement and application of aerosol optical depths in China. Part 1: inter- 
comparison of NPP-VIIRS and aqua-MODIS. Atmos. Environ. 175, 221–233. 

Wei, J., Sun, L., Peng, Y., Wang, L., Zhang, Z., Bilal, M., Ma, Y., 2018b. An improved 
high-spatial-resolution aerosol retrieval algorithm for MODIS images over land. 
J. Geophys. Res.-Atmos. 123, 12,291–12,307. 

Wei, J., Li, Z., Guo, J., Sun, L., Huang, W., Xue, W., Fan, T., Cribb, M., 2019b. Satellite- 
derived 1 km-resolution PM1 concentrations from 2014 to 2018 across China. 
Environ. Sci. Technol. 53 (22), 13,265–13,274. https://doi.org/10.1021/acs. 
est.9b03258. 

Wei, J., Li, Z., Peng, Y., Sun, L., 2019c. MODIS collection 6.1 aerosol optical depth 
products over land and ocean: validation and comparison. Atmos. Environ. 201, 
428–440. 

Wei, J., Li, Z., Peng, Y., Sun, L., Yan, X., 2019d. A regionally robust high-spatial- 
resolution aerosol retrieval algorithm for MODIS images over eastern China. IEEE 
Transac. Geosci. Remote Sens. 57 (7), 4748–4757. 

Wei, J., Peng, Y., Mahmood, R., Sun, L., Guo, J., 2019e. Intercomparison in spatial 
distributions and temporal trends derived from multi-source satellite aerosol 
products. Atmos. Chem. Phys. 19, 7183–7207. 

Wei, J., Huang, W., Li, Z., Xue, W., Peng, Y., Sun, L., Cribb, M., 2019a. Estimating 1 km- 
resolution PM2.5 concentrations across China using the space-time random forest 
approach. Remote Sens. Environ. 231, 111221. https://doi.org/10.1016/j. 
rse.2019.111221. 

Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., 
Lyapustin, A., Liu, L., Wu, H., Song, Y., 2020. Improved 1 km resolution PM2.5 
estimates across China using enhanced space-time extremely randomized trees. 
Atmos. Chem. Phys. 20 (6), 3273–3289. 

Wu, Y., Cordero, L., Gross, B., Moshary, F., Ahmed, S., 2014. Assessment of CALIPSO 
attenuated backscatter and aerosol retrievals with a combined ground-based multi- 
wavelength lidar and sunphotometer measurement. Atmos. Environ. 84, 44–53. 

Xin, J., Wang, Y., Pan, Y., Ji, D., Liu, Z., et al., 2015. The campaign on atmospheric 
aerosol research network of China. Bull. Am. Meteorol. Soc. 96 (7), 1137–1155. 
https://doi.org/10.1175/BAMS-D-14-00039.1. 

Xue, T., Zheng, Y., Tong, D., Zheng, B., Li, X., Zhu, T., Zhang, Q., 2019. Spatiotemporal 
continuous estimates of PM2.5 concentrations in China, 2000–2016: a machine 
learning method with inputs from satellites, chemical transport model, and ground 
observations. Environ. Int. 201, 345–357, 123.  

Yan, X., Shi, W., Li, Z., Li, Z., Luo, N., Zhao, W., Wang, H., Yu, X., 2017. Satellite-based 
PM2.5 estimation using fine-mode aerosol optical depth thickness over China. Atmos. 
Environ. 170, 290–302. https://doi.org/10.1016/j.atmosenv.2017.09.023. 

Yana, J., Henrik, A., Shiqiu, Z., 2016. Air pollution control policies in China: a 
retrospective and prospects. Int. J. Environ. Res. Public Health 13 (13), 1219. 
https://doi.org/10.3390/ijerph13121219. 

Yao, F., Wu, J., Li, W., Peng, J., 2019. A spatially structured adaptive two-stage model for 
retrieving ground-level PM2.5 concentrations from VIIRS AOD in China. ISPRS J. 
Photogramm. Remote Sens. 151, 263–276. 

Yu, W., Liu, Y., Ma, Z., Bi, J., 2017. Improving satellite-based PM2.5 estimates in China 
using Gaussian processes modeling in a Bayesian hierarchical setting. Sci. Rep. 7, 
7048. https://doi.org/10.1038/s41598-017-07478-0. 

Zhang, Y., Li, Z., 2015. Remote sensing of atmospheric fine particulate matter (PM2.5) 
mass concentration near the ground from satellite observation. Remote Sens. 
Environ. 160, 252–262. 

Zhang, Q., Streets, D., He, K., Klimont, Z., 2007. Major components of China’s 
anthropogenic primary particulate emissions. Environ. Res. Lett. 2 (No. 045027).  

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., et al., 2019a. Drivers of improved 
PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. U. S. A. https:// 
doi.org/10.1073/pnas.1907956116. 

Zhang, Z., Wu, W., Fan, M., Tao, M., Wei, J., Jin, J., Tan, Y., Wang, Q., 2019b. Validation 
of Himawari-8 aerosol optical depth retrievals over China. Atmos. Environ. 199, 
32–44. 

Zhang, T., Zang, L., Wan, Y., Wang, W., Zhang, Y., 2019c. Ground-level PM2.5 estimation 
over urban agglomerations in China with high spatiotemporal resolution based on 
Himawari-8. Sci. Total Environ. 676, 535–544. 

Zhou, C., Wang, K., 2016. Evaluation of surface fluxes in ERA-interim using flux tower 
data. J. Clim. 29, 1573–1582. 

Zhou, C., He, Y., Wang, K., 2018. On the suitability of current atmospheric reanalyses for 
regional warming studies over China. Atmos. Chem. Phys. 18, 8113–8136. 

J. Wei et al.                                                                                                                                                                                                                                      

https://doi.org/10.5194/amt-12-1739-2019
https://doi.org/10.1029/2005JD006996
https://doi.org/10.1029/2018JD028599
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0205
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0205
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0205
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0210
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0210
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0210
https://doi.org/10.1021/acs.est.9b03258
https://doi.org/10.1021/acs.est.9b03258
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0225
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0225
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0225
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0230
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0230
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0230
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0235
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0235
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0235
https://doi.org/10.1016/j.rse.2019.111221
https://doi.org/10.1016/j.rse.2019.111221
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0240
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0240
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0240
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0240
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0245
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0245
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0245
https://doi.org/10.1175/BAMS-D-14-00039.1
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0255
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0255
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0255
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0255
https://doi.org/10.1016/j.atmosenv.2017.09.023
https://doi.org/10.3390/ijerph13121219
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0270
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0270
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0270
https://doi.org/10.1038/s41598-017-07478-0
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0280
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0280
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0280
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0285
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0285
https://doi.org/10.1073/pnas.1907956116
https://doi.org/10.1073/pnas.1907956116
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0295
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0295
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0295
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0300
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0300
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0300
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0305
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0305
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0310
http://refhub.elsevier.com/S0034-4257(20)30509-5/rf0310

	Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and po ...
	1 Introduction
	2 Materials and methods
	2.1 Data sources and integration
	2.1.1 In situ PM2.5 data
	2.1.2 MAIAC AOD products
	2.1.3 Auxiliary data

	2.2 Space-Time Extra-Trees model
	2.3 Evaluation and analysis methods

	3 Results and discussion
	3.1 ChinaHighPM2.5 dataset
	3.2 Evaluation of model performance
	3.2.1 Overall accuracy
	3.2.2 Spatiotemporal validation
	3.2.3 Predictive power

	3.3 Spatial coverage and distribution
	3.3.1 National and regional pollution
	3.3.2 City-level pollution

	3.4 Long-term variation and trend
	3.4.1 National and regional trends
	3.4.2 Relation to government policies


	4 Summary and conclusions
	Data availability
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


