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A B S T R A C T   

Ozone (O3) is an important trace and greenhouse gas in the atmosphere, posing a threat to the ecological 
environment and human health at the ground level. Large-scale and long-term studies of O3 pollution in China 
are few due to highly limited direct ground and satellite measurements. This study offers a new perspective to 
estimate ground-level O3 from solar radiation intensity and surface temperature by employing an extended 
ensemble learning of the space-time extremely randomized trees (STET) model, together with ground-based 
observations, remote sensing products, atmospheric reanalysis, and an emission inventory. A full-coverage 
(100%), high-resolution (10 km) and high-quality daily maximum 8-h average (MDA8) ground-level O3 data-
set covering China (called ChinaHighO3) from 2013 to 2020 was generated. Our MDA8 O3 estimates (pre-
dictions) are reliable, with an average out-of-sample (out-of-station) coefficient of determination of 0.87 (0.80) 
and root-mean-square error of 17.10 (21.10) μg/m3 in China. The unique advantage of the full coverage of our 
dataset allowed us to accurately capture a short-term severe O3 pollution exposure event that took place from 23 
April to 8 May in 2020. Also, a rapid increase and recovery of O3 concentrations associated with variations in 
anthropogenic emissions were seen during and after the COVID-19 lockdown, respectively. Trends in O3 con-
centration showed an average growth rate of 2.49 μg/m3/yr (p < 0.001) from 2013 to 2020, along with the 
continuous expansion of polluted areas exceeding the daily O3 standard (i.e., MDA8 O3 = 160 μg/m3). Sum-
mertime O3 concentrations and the probability of occurrence of daily O3 pollution have significantly increased 
since 2015, especially in the North China Plain and the main air pollution transmission belt (i.e., the “2 + 26” 
cities). However, a decline in both was seen in 2020, mainly due to the coordinated control of air pollution and 
ongoing COVID-19 effects. This carefully vetted and smoothed dataset is valuable for studies on air pollution and 
environmental health in China.   

1. Introduction 

Ozone (O3) is an important atmospheric trace gas, where O3 in the 
stratosphere plays a crucial role in absorbing ultraviolet rays, protecting 
the environment and humans. Tropospheric O3 (< 12 km above the 
ground) is mainly produced by anthropogenic activities, affecting 

radiative forcing at a global scale with implications on climate change 
(Checa-Garcia et al., 2018; Chen et al., 2007; Gaudel et al., 2018; 
Shindell et al., 2013; Sinha and Toumi, 1997). Exposure to high surface 
O3 levels is highly related to increased human health risks, including 
cardiovascular and respiratory diseases (Bell et al., 2004; Lim et al., 
2019; Turner et al., 2015). It also affects the ecosystem and agricultural 
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production, e.g., inhibiting plant growth, promoting leaf senescence, 
and affecting crop yields (Ainsworth et al., 2012; Mills et al., 2018; Rai 
and Agrawal, 2012; Sitch et al., 2007). 

Since the middle of the twentieth century, many countries around 
the world have observed tropospheric and ground-level O3. In 2013, the 
Chinese Ministry of Environment and Ecology (MEE) established a na-
tional air quality observation network to monitor real-time O3, partic-
ulate matter (PM), and other near-surface air pollutants (MEE, 2018). 
However, the construction and maintenance of ground networks require 
substantial manpower and material resources. As such, monitoring sta-
tions are sparsely distributed. Satellite remote sensing can make up for 
such a deficiency by providing spatially continuous atmospheric O3 
distributions. The Ozone Monitoring Instrument (OMI) on the Aura 
satellite, launched in 2004, provides a variety of widely used daily, 
global-coverage trace gas products, e.g., O3, nitrogen dioxide (NO2), and 
sulfur dioxide (SO2). Existing techniques from space mainly provide the 
total column O3, tropospheric O3, and ozone profiles at different vertical 
ranges (Liu et al., 2010). Near-surface O3 typically accounts for only a 
few percent of total column O3, and the retrieval sensitivity to near- 
surface O3 from ultraviolet measurements is limited. In some cases, 
tropospheric total column amounts can be helpful for understanding 
global- and regional-scale features, but values for O3 in the planetary 
boundary layer are challenging to obtain and at exposure heights (~2 
m), even more so. It is thus particularly difficult to extract near-surface 
O3 concentrations from satellite measurements. 

In recent years, much effort has been made to estimate near-surface 
O3 concentrations using three main methodologies: chemical transport 
models, statistical models, and artificial intelligence. Chemical transport 
methods mainly use mature models, e.g., WRF-Chem, CMAQ, and GEOS- 
Chem, to simulate O3 at the ground level by considering chemical re-
actions and the transport of air pollutants (Di et al., 2017; Hu et al., 
2016; Qiao et al., 2019; Wang et al., 2016a; Wang et al., 2015). Statis-
tical models fit the relationships between the measured air pollution and 
their potential influential factors (e.g., satellite retrievals, precursors, 
and meteorology) by applying different regression methods, such as 
Land Use Regression (LUR; Beelen et al., 2009; Huang et al., 2017; 
Kerckhoffs et al., 2015; Son et al., 2018), Bayesian maximum entropy 
(BME; Adam-Poupart et al., 2014; Chen et al., 2020), the generalized 
additive model (GAM; Li et al., 2020b), and geographically weighted 
regression (GWR, Zhang et al., 2020). Artificial intelligence, i.e., ma-
chine and deep learning, allows for obtaining more accurate parameter 
estimates by mining valuable information from big data using different 
methods, e.g., neural network (Di et al., 2017), random forest (RF; Li 
et al., 2020b; Zhan et al., 2018), and eXtreme Gradient Boosting 
(XGBoost; Li et al., 2020b). 

In general, chemical/numerical methods can provide high spatio-
temporal coverage of near-surface O3 simulations but are computa-
tionally intensive. Predictions with any chemical mechanism are 
sensitive in nonlinear ways to emissions and meteorology. Statistical 
models have been widely adopted because of their simplicity and 
rapidity, but they are sensitive to outliers and easily affected by collinear 
variables, leading to poor estimates. Artificial intelligence has become 
very popular recently due to its strong data-mining ability, but they are 
always directly applied and neglect the spatiotemporal heterogeneity of 
air pollution. Most past related studies are limited by input data sources, 
e.g., satellite total column gas products (e.g., OMI/Aura) with missing 
values, and meteorological products, e.g., National Centers for Envi-
ronmental Protection (NCEP), Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA-2), and ERA-Interim, at 
low spatiotemporal resolutions (e.g., 3–6 h, 0.25◦–0.625◦). 

Over the years, PM pollution has decreased significantly due to 
implemented environmental protection and control measures (Wang 
et al., 2020; Wei et al., 2021a–c; Xue et al., 2021; Zhang et al., 2019). By 
contrast, surface O3 pollution has increased in China (Li et al., 2019; Lu 
et al., 2018; Wang et al., 2016b; Wang et al., 2020), creating a major 
public health concern (Shen et al., 2019). Compared with PM studies, 

research on ground-level O3 in China is more meager. Therefore, aimed 
at addressing the above problems, according to the idea of ensemble 
learning and considering the spatiotemporal variations in O3 pollution, 
we extended a space-time extremely randomized trees (STET) model to 
derive daily ground-level O3 concentrations with full spatial coverage at 
a resolution of 10 km from 2013 to 2020 across China. We also validated 
our O3 estimates at different spatiotemporal scales and investigated the 
variations in daily and multi-year O3 pollution via time series analyses 
across China. 

2. Materials and methods 

2.1. Data sources 

2.1.1. Surface O3 observations 
Used are hourly ground-based O3 concentrations [in μg/m3 at stan-

dard conditions (273 K, 1013 hPa)] collected by MEE across mainland 
China starting from an initial ~940 monitoring stations in 2013 and 
ending with ~1630 stations by 2020 (Fig. 1). We first removed invalid 
values and abnormal values due to instrument calibration issues. More 
importantly, since 31 August 2018, the reference state of gas observa-
tions was changed from the standard condition (i.e., 273 K and 1013 
hPa) to room temperature and pressure (i.e., 298 K and 1013 hPa). The 
new measurements of O3 concentrations (in μg/m3) were thus corre-
spondingly rescaled by a factor of 1.09375 (MEE, 2018). For data pre-
sented here, 1 μg/m3 is equivalent to 0.467 ppbv. Additionally, we 
averaged maximum O3 concentrations over eight hours in a day to 
obtain MDA8 O3 values at each station in China for each year from 1 
January 2013 to 31 December 2020. 

2.1.2. Potential factors affecting surface O3 
Surface O3, a secondary air pollutant, is the characteristic product of 

complex photochemical reactions affected by numerous natural and 
human factors. Most satellites (e.g., OMI) provide only total-column or 
tropospheric O3 retrievals, rather than lower tropospheric O3 retrievals 
where there are large differences in O3 content. Long-term satellite O3 
products with high spatial resolutions are rarely available, and those 
existing satellite retrievals have numerous missing values. In our study, 
we provide a new approach for estimating high-resolution surface O3 
concentrations with full coverage using two crucial meteorological pa-
rameters, namely, solar radiation intensity and surface temperature 
(Bloomer et al., 2009; Lee et al., 2014; Li et al., 2020a). Thus, available 
surface solar radiation downwards (or downward shortwave radiation, 
DSR) and air temperature (TEM) measurements are used as main pre-
dictors for the ground-level O3 estimation. 

Other meteorological variables can also affect O3, e.g., an increase in 
relative humidity (RH) and surface pressure (SP) can have diverse effects 
on O3 concentrations in the lower troposphere (He et al., 2017; 
Loughner et al., 2011; Taubman et al., 2006). A change in planetary 
boundary layer height (PBLH) also impacts O3 pollution (Benish et al., 
2020; Dickerson et al., 2007; Goldberg et al., 2014; Ma et al., 2011; 
Sánchez-Ccoyllo et al., 2006). Winds, i.e., horizontal (WU) and vertical 
(WV) components, can affect the transport of O3 and produce high O3 
levels in the downwind direction (Benish et al., 2020; Dickerson et al., 
2007; Duan et al., 2008; Ma et al., 2011). Precipitation (PRE) and 
evaporation (ET) can also influence O3 pollution by affecting mixing and 
photolysis rates (Dickerson et al., 1997; Meleux et al., 2007). The above 
nine daily meteorological variables were chosen from the latest released 
hourly ERA5 reanalysis dataset at a high spatial resolution reaching up 
to 0.1◦ × 0.1◦ (Hersbach et al., 2020). The spatiotemporal resolution of 
ERA5 reanalysis products is higher than from other atmospheric rean-
alysis products (e.g., NCEP and MERRA-2) used in previous studies (Di 
et al., 2017; Li et al., 2020b; Liu et al., 2020; Zhan et al., 2018). 

Remote sensing measurements of OMI/Aura total-column O3 prod-
ucts (Pawan, 2012) were also considered. NO2 concentrations may have 
large impacts on O3, so OMI/Aura tropospheric NO2 products were 
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utilized (Krotkov et al., 2019). The LandScan™ product was also 
selected to provide population distribution (POP) information. Also 
Moderate Resolution Imaging Spectroradiometer land cover type (LUC) 
and NDVI products, and Shuttle Radar Topography Mission (SRTM) 
digital elevation model (DEM) data were employed to describe land-use 
and terrain changes across China. Anthropogenic emissions from fossil 
fuel combustion, industrial production, and vehicle exhaust are pre-
cursors affecting the formation of surface O3 (Li et al., 2020a). Direct 
emissions of three main O3 precursors, i.e., nitrogen oxides (NOx), vol-
atile organic compounds (VOCs), and carbon monoxide (CO), whose 
concentrations were provided by the Multiresolution Emission In-
ventory for China (MEIC) (Li et al., 2017a; Zheng et al., 2018), were thus 
used. 

Table S1 summarizes the ground-based, satellite remote sensing, 
atmospheric reanalysis, and model emission datasets used in this study. 
Except for meteorological conditions, the spatiotemporal resolutions of 
other auxiliary data are coarser than our targeted model resolution. The 
coarser-spatial-resolution variables (e.g., emissions and NO2) show 
smaller variations in space than meteorological variables. The coarser- 
temporal-resolution variables (i.e., DEM, LUC, and POP) change little 
over time. In addition, they are generally less important than the two 
main predictors (i.e., DSR and TEM) in estimating surface O3. Therefore, 
similar to previous studies (Liu et al., 2020; Wei et al., 2021b; Zhan 
et al., 2018; Zhang et al., 2020), all finer and coarser-resolution auxiliary 
data were aggregated and resampled (regridded) to the same spatial 
resolution of 0.1◦ × 0.1◦ using the bilinear interpolation approach, and 
the same time interval. 

2.2. STET modeling 

In this study, a STET model was extended for estimating ground-level 
O3 concentrations (Wei et al., 2020, 2021a), based on the ensemble 
learning method called extremely randomized trees (extra-trees, or ERT) 
(Geurts et al., 2006). 

2.2.1. Model training 
First, all selected factors with potential effects on surface O3 were 

input to the ERT model for model training, followed by four main steps:  

1) A training-and-validation dataset (N) was generated by collocating 
surface O3 measurements, satellite data, meteorological variables, 
and model emissions at each surface monitoring station on each day 
of one year. The entire training dataset was then used to construct 
each decision tree. 

2) For each binary tree, a random split (S, a) was first generated ac-
cording to surface O3 measurements by randomly selecting one 
arbitrary number (ac) between the maximum (amax) and minimum 
(amin) values. The training samples were next randomly assigned to 
two branches.  

3) All auxiliary feature attributes (a1, …, ak) in the node were traversed 
to get bifurcation values (s1, …, sk) for all feature attributes, based on 
the Gini index (GI; Jiang et al., 2009). The best split (s*) was then 
determined when the scoring function was satisfied: score(s*, S) =
max[Score(si, S)] (Geurts et al., 2006).  

4) A decision tree was established using the classification-and- 
regression-trees (CART) algorithm (Breiman et al., 1984). Thou-
sands of decision trees were constructed by repeating the above 
steps. Last, all weak classifiers were combined to form a strong 
classifier, i.e., ERT, allowing for parallel processing. 

Fig. S1 shows a basic diagram of how trees begin their learning. 
Geurts et al. (2006) provide detailed information on how the ERT model 
works. The ERT model enables us to evaluate the importance of each 
independent variable for the surface O3 estimation, assigning an 
importance score to each variable, calculated according to the GI. It 
normalizes the cumulative changes in GIs before and after node 
branching for each feature during the model training (Jiang et al., 
2009). The higher this score, the more important is this feature in the 
decision-tree construction. Variables with high scores make greater 
contributions to the model performance. Low-score variables have 
smaller effects on the model and may generate redundant information 
(Wei et al., 2020, 2021a). Variables with importance scores less than 1% 
are eliminated from the model to improve its efficiency and avoid 
overfitting caused by redundant input variables. 

Per our analysis of each feature importance, DSR and TEM are the 
two most important variables for model construction, with high 
importance scores of 32% and 14%, respectively (Fig. S2). OMI NO2 and 
O3 products are also highly valuable, with importance scores of 6% and 

Fig. 1. Spatial distributions of ground O3 monitoring stations (yellow dots) in 2013 and newly established stations (red dots) in 2020 across China, where the 
background is surface elevation (m). The black and magenta solid lines represent regional and provincial boundaries in China, respectively, and conglomerations of 
magenta dots show the locations of the “2 + 26” cities. Leftmost and rightmost smaller panels show four regions of interest in this study: the Sichuan Basin (SCB), the 
Pearl River Delta (PRD), the Beijing-Tianjin-Hebei (BTH) region, and the Yangtze River Delta (YRD). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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5%. However, they can only provide trace gas information about the 
troposphere and the whole atmosphere. Other meteorological variables 
(especially ET and RH) and two land-related variables (i.e., DEM and 
NDVI) also have significant impacts on O3 estimates, with importance 
scores ranging from 2% to 7%. The emissions of three main O3 pre-
cursors (i.e., NOx, VOCs, and CO) influence the model to some degree, 
with importance scores of about 2%. In general, all 18 selected inde-
pendent variables have an impact, with importance scores >1.5%. They 
are, therefore, all kept in the model. 

2.2.2. Model extension 
In the second stage, we extended a STET model for the surface O3 

estimation by considering the autocorrelation of O3 pollution in space 
and its differences in time series using the original ERT model (Wei et al., 
2021a). The position of one point in space is expressed by its longitude 
and latitude and the Haversine great-circle distances to the four corners 
and the center of the study region (i.e., 73.6◦E-134.8◦E, 15.8◦N-53.7◦N). 
The time is expressed by the day of the year (DOY), set to identify each 
raw data record on each day under different air pollution conditions. 
The above-mentioned independent variables, along with space and time 

terms, are input into the model to build a robust ground-level O3 esti-
mation specific to China. 

2.3. Validation method 

In this study, the widely adopted out-of-sample (sample-based) 10- 
fold cross-validation (10-CV) method was selected to test the overall 
model performance in estimating near-surface O3 concentrations (Di 
et al., 2017; Li et al., 2020b; Liu et al., 2020; Zhan et al., 2018). This 
method stipulates that all data samples are first randomly divided into 
10 groups, of which 9 groups (i.e., 90% of the samples) are used for 
model training, and the rest (i.e., 10% of the samples) are used for model 
validation. This operation runs 10 times to ensure that all samples have 
been tested (Rodriguez et al., 2010). 

Furthermore, an additional out-of-station (station-based) 10-CV 
method was employed to test the spatial predictive ability of the 
model in areas without ground-based measurements (Li et al., 2017b; 
Wei et al., 2020; Wu et al., 2021). It is performed using measurements 
from ground-based O3 monitoring stations. The stations are randomly 
divided into 10 groups, of which data samples from 9 groups (i.e., 90% 

Fig. 2. Flowchart of the mapping process of the ChinaHighO3 dataset in our study.  
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of the stations) and the remaining group (i.e., 10% of the stations) are 
employed for model training and validation, respectively. The training 
and validation samples thus represent data samples collected at different 
locations in space. This method enables us to evaluate the predictive 
accuracy of the model at locations where ground-based O3 measure-
ments are unavailable. 

In addition, several main statistical metrics were used, including 
ordinary least squares (OLS; Zdaniuk, 2014) regression (e.g., slope and 
intercept), coefficient of determination (R2), root-mean-square error 
(RMSE), mean absolute error (MAE), and mean relative error (MRE). 
Deseasonalized O3 monthly anomalies were adopted to calculate tem-
poral trends (Wei et al., 2019) and used to analyze the long-term 
spatiotemporal variations in O3 pollution across China. Fig. 2 shows 
the flowchart of the mapping process of the ChinaHighO3 dataset in our 
study. 

3. Results and discussion 

3.1. Accuracy assessment 

3.1.1. Overall model performance 
First, we validated the overall performance of the developed model 

using the out-of-sample approach at different spatial scales. Collocated 
are more than 3.5 million data samples (N = 3,567,344) from 2013 to 
2020 across China. The MDA8 O3 estimates for the whole of China are 
highly consistent with surface measurements (CV-R2 = 0.87), with the 
slope and y-intercept equal to 0.87 and 11.8 μg/m3, respectively 
(Fig. 3a). The mean RMSE, MAE, and MRE values are 17.10 μg/m3, 
11.29 μg/m3, and 18.38%, respectively, over the entire domain. Note 
that the overall accuracy of O3 estimates has significantly improved 
compared to results derived from the original ERT model (i.e., CV-R2 =

0.78, slope = 0.81, RMSE = 22.39 μg/m3, and MAE = 14.88 μg/m3) 
(Geurts et al., 2006). This confirms the necessity for including spatio-
temporal information about O3 pollution. 

We further tested the model performance in typical regions in China. 
The model works best over the Beijing-Tianjin-Hebei (BTH) region 
(Fig. 3c) and the North China Plain (NCP, Fig. 3b), with out-of-sample 
CV-R2 values of 0.91 and 0.89, respectively, and slopes from linear 
regression close to 1.0 (0.91 and 0.89, respectively). The model per-
formance is slightly poorer (e.g., CV-R2 = 0.85–0.86, and slope =
0.84–0.86) in the Yangtze River Delta (YRD, Fig. 3d), the Pearl River 
Delta (PRD, Fig. 3e), and the Sichuan Basin (SCB, Fig. 3f). Overall, the 
model uncertainty is generally small and stable with small differences 
(e.g., RMSE = 18.9–21.3 μg/m3, MAE = 12.1–13.6 μg/m3, and MRE =

Fig. 3. Out-of-sample cross-validation results of MDA8 O3 estimates (μg/m3) from 2013 to 2020 (a) in China, (b) the North China Plain (NCP), (c) the Beijing-Tianjin- 
Hebei (BTH) region, (d) the Yangtze River Delta (YRD), (e) the Pearl River Delta (PRD), and (f) the Sichuan Basin (SCB). Frequencies in the right-hand legend indicate 
the total number of data samples in each cell. 
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17.6–24.7%). These results suggest the varying robustness of our model 
at the regional scale in China, stemming chiefly from variable input 
parameters in terms of their density and accuracy. 

The model performance for each separate year (Table 1) was also 
evaluated for the whole of China. The overall accuracy of the MDA8 O3 
estimates in the years since 2017 (i.e., out-of-sample CV-R2 = 0.89–0.93, 
RMSE = 11.9–15.6 μg/m3, MAE = 7.9–10.8 μg/m3, and MRE =
10.3–15.0%) is generally better than that of the previous years (i.e., out- 
of-sample CV-R2 = 0.79–0.82, RMSE = 19.1–22.4 μg/m3, MAE =
12.9–14.9 μg/m3, and MRE = 21.4–31.8%). The continuous increase in 
the density of monitoring stations, resulting in a sharp increase in the 
number of data samples, and instrument improvements and quality 
control upgrades explain this (Wei et al., 2021a). Overall, our model 
works well for the study period considered and for individual years in 
the study domain. 

On the individual-station scale (Fig. 4), the sample size varies from 
site to site due to differences in the observational record and the number 
of useful data samples from 2013 to 2020. Except for a few stations 
established later in the study period, most stations have a sufficient 
number of data samples (Fig. S3a), with an average sample size (N) of 
2230 and with more than 83% of the stations having at least 5 years of 
data samples (i.e., N > 1825). In terms of model accuracy, CV-R2 values 
exceed 0.8 at ~83% of the stations, especially those located in central 
and eastern China (CV-R2 > 0.9). In terms of model uncertainty, except 
for a few individual stations, ~83% of the stations have RMSE values 
<21 μg/m3, ~88% have MAE values <15 μg/m3, and ~ 85% have MRE 
values <25%. Overall, our model performs well at the station scale, with 
average CV-R2, RMSE, MAE, and MRE values of 0.86, 16.48 μg/m3, 
11.23 μg/m3, and 18.36%, respectively. 

3.1.2. Spatial predictive capability 
Next, we focus on evaluating the ability of our model to predict 

surface O3 spatially using the out-of-station approach at varying spatial 
scales. Over the entire domain, our surface O3 predictions are well 
correlated to observations (e.g., CV-R2 = 0.80, slope = 0.84), with mean 
RMSE, MAE, and MRE values of 21.10 μg/m3, 13.87 μg/m3, and 23.18% 
(Fig. S4a). These values are somewhat lower than the out-of-sample 
validation results (Fig. 3a), indicating a strong spatial predictive abil-
ity. The spatial predictive ability of the model also gradually increases 
over the years (Table 1), possibly due to the same reasons discussed 
above. 

On the regional scale, the predictive ability of the model varies, i.e., 
better surface O3 predictions were observed in the BTH (CV-R2 = 0.87, 
RMSE = 21.51 μg/m3; Fig. S4c) and NCP (CV-R2 = 0.84, RMSE = 21.99 
μg/m3; Fig. S4b) regions, while relatively less accurate predictions were 
observed in the YRD, SCB, and PRD regions (CV-R2 < 0.80, RMSE >22.6 
μg/m3; Fig. S4d-f). Compared with the out-of-sample results (Fig. S4: 
b–f), the accuracy changed little. The evaluation metrics of the former 
two regions decreased slightly less than those of the other three regions. 
This is mainly due to the different densities of monitoring stations in 
each region. 

Furthermore, the spatial predictive ability of the model shows spatial 

differences on the individual-station scale (Fig. S5). The predictive ac-
curacy of surface O3 concentrations is poor in most stations located in 
western China, with large estimated uncertainties (e.g., CV-R2 < 0.5, 
RMSE >24 μg/m3, MAE > 18 μg/m3, and MRE > 25%). By contrast, the 
model has a strong predictive ability in most stations in eastern China, 
with high CV-R2 values >0.8 and small RMSE, MAE, and MRE values of 
<18, 12 μg/m3, and 15%, respectively. This difference in predictive 
ability between the eastern and western parts of China likely arises 
because aside from different environmental and population conditions, 
there are fewer monitoring stations in western China. At locations that 
have never had air pollution monitoring, such as remote desert and 
plateau areas, the uncertainty in the model predictions can be larger. 
This can only be truly quantified when new observations from these 
remote areas become available. In general, ~80%, 78%, 86%, and 70% 
of the stations have CV-R2, RMSE, MAE, and MRE values >0.7, < 24 μg/ 
m3, 18 μg/m3, and 25%, with average values of 0.79, 20.08 μg/m3, 
13.82 μg/m3, and 23.17%, respectively. 

3.1.3. Temporal-scale validation 
Fig. 5 shows the time series of the evaluation metrics used to evaluate 

how well the model estimated daily O3 surface concentrations from 
2013 to 2020. The daily sample size is large, ranging from 8003 to 
10,060, with an average of 9766 and remaining unchanged over time 
(Fig. S3b). This is due to the unique advantage of the ChinaHighO3 
dataset, namely, its full coverage of China. While the performance varies 
somewhat seasonally, the magnitudes of the changes are moderate 
throughout the year, with CV-R2s ranging from 0.69 to 0.89 (average =
0.81), exceeding 0.75 on about 88% of the days in a year. The absolute 
uncertainties (i.e., RMSE and MAE) of the O3 estimates vary seasonally, 
i.e., low in spring and winter but high in summer. By contrast, the 
relative uncertainty (MRE) shows an opposite seasonal variation. Sur-
face MDA8 O3 concentrations are relatively high in summer in most mid- 
latitude regions of China (Gong et al., 2018). Reasons for the larger 
errors in summer are the longer diurnal cycle and greater variation in 
summertime O3. The averaged variables used in the model may not 
reflect conditions associated with a high O3 content in the afternoon, 
while observations are likely driven by the afternoon peaks. In general, 
average RMSE, MAE, and MRE values are 18.82 μg/m3, 11.27 μg/m3, 
and 18.42%, and < 20, 15 μg/m3, and 20% μg/m3 on ~86%, 99%, and 
75% of the days, respectively. 

Monthly mean MDA8 O3 estimates for each year were also evaluated 
(Fig. S6). High accuracy is seen, with strong slopes from linear regres-
sion of 0.83–0.97, high R2 values of 0.86–0.97, and small uncertainties, 
with RMSE and MAE (MRE) values ranging from 5.5 and 4.0 μg/m3 

(4.4%) to 13.4 and 9.0 μg/m3 (13.8%) among different years. In general, 
the data quality of the monthly O3 estimates (N = 119,194) is reliable (e. 
g., R2 = 0.93, RMSE = 9.42 μg/m3, MAE = 6.91 μg/m3, and MRE =
8.56%) during the entire study period of 2013–2020. This allows us to 
accurately analyze the spatiotemporal distributions of and variations in 
O3 pollution in China. 

Table 1 
Statistics describing cross-validation results of MDA8 O3 estimates (μg/m3) for each year from 2013 to 2020 in China.  

Year Sample size Overall accuracy Spatial predictive ability 

N R2 RMSE MAE MRE R2 RMSE MAE MRE 

2013 115,663 0.79 21.99 14.83 22.90 0.63 29.57 19.82 31.18 
2014 325,152 0.80 22.39 14.81 31.80 0.65 30.02 20.52 45.79 
2015 519,391 0.79 20.89 13.90 27.75 0.64 27.73 18.87 37.69 
2016 516,746 0.82 19.19 12.99 21.49 0.72 23.71 16.38 27.45 
2017 527,483 0.89 15.52 10.79 14.99 0.85 17.82 12.54 17.36 
2018 520,002 0.91 14.10 9.64 13.34 0.88 15.66 10.82 15.00 
2019 520,381 0.92 13.99 9.49 13.17 0.91 15.31 10.48 10.48 
2020 522,526 0.93 11.96 7.97 10.27 0.92 12.96 8.71 11.33 
All 3,567,344 0.87 17.10 11.29 18.38 0.80 21.10 13.87 23.18  
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3.2. Spatiotemporal surface O3 variations 

3.2.1. The ChinaHighO3 dataset 
Combining ground-based observations, satellite remote sensing data, 

atmospheric reanalysis products, and emission inventory, we generated 
the ChinaHighO3 dataset using the STET model, which belongs to one of 
the series of long-term, full-coverage, high-resolution and high-quality 
ground-level air pollutants for China (i.e., ChinaHighAirPollutants, 
CHAP). The ChinaHighO3 dataset includes daily MDA8 O3 maps from 1 
January 2013 to 31 December 2020, which was released on 30 
December 2020 and is constantly updated. It overcomes the problem of 
missing data in optical remote sensing products caused by cloud con-
taminations and can provide full-coverage ground-level O3 distributions 
over China. Monthly, seasonal, and annual MDA8 O3 maps from 2013 to 
2020 are also available (Table S2). 

Fig. 6 presents two typical examples of MDA8 O3 maps, i.e., 18 June 
and 11 November 2019, and the annual map for 2019 in China. Our O3 
estimates can cover the whole of China on these two individual days. In 
general, the O3 concentration is particularly high (> 150 μg/m3) in 
northern China and much lower (< 80 μg/m3) in southern China on 18 
June 2019 (average = 118.7 ± 36.1 μg/m3). High emissions of three 
main O3 precursors (i.e., NOx, VOCs, and CO) are mainly observed in 
eastern China, especially the NCP (Fig. S7). In general, differences in 
surface O3 concentrations between northern and southern China were 
on the order of 2% on this day. A different situation was observed on 11 
November 2019 (average = 77.9 ± 24.6 μg/m3). On an annual scale, 
differences in O3 distribution between northern and southern China in 
2019 decreased, with an average level of 98.3 ± 11.3 μg/m3. The great 
differences between northern and southern China on different days are 
mainly due to differences in sunlight and ozone chemical formation in 

different seasons. A comparison with ground-based observations shows 
highly consistent spatial patterns on both daily and annual scales across 
China. These results thus illustrate that spatially continuous O3 data are 
important for air pollution studies at those places without monitoring 
stations. 

Fig. 7 shows mean MDA8 O3 maps for different seasons from 2013 to 
2020 across China. O3 concentrations changed significantly on a sea-
sonal scale and were extremely high in the summer (average = 103.6 ±
18.0 μg/m3), especially in the NCP (average = 138.8 ± 13.5 μg/m3), 
followed by spring (average = 99.4 ± 9.2 μg/m3). By contrast, winter-
time O3 concentrations in China were much lower (average = 69.9 ±
7.7 μg/m3), especially in the BTH region (average = 55.4 ± 7.6 μg/m3). 
The spatial pattern of O3 in autumn (average = 80.9 ± 10.1 μg/m3) was 
similar but generally higher than that in winter across China, especially 
in southeastern areas. Fig. S8 shows zoomed-in summer mean O3 maps 
for four key regions in China. The ChinaHighO3 dataset can reflect and 
describe well the distribution of and variation in ozone pollution at the 
local, even urban, scale due to its high spatial resolution of 10 km. All 
four typical regions experienced different degrees of O3 pollution in 
summer, especially the BTH (average = 142.9 ± 14.5 μg/m3) and YRD 
(average = 113.9 ± 13.7 μg/m3) regions. 

3.2.2. A short-term severe O3 pollution event 
In addition to the atmospheric environment and air quality, short- 

term exposure to air pollution has a significant impact on human 
health (Almeida et al., 2011; Giani et al., 2020; Wong et al., 2007). It is 
difficult for traditional ground-based observations and previous satellite 
estimates to accurately capture air pollution on a wide scale due to the 
uneven distribution of surface monitoring stations. Our study helps 
make up for this deficiency by monitoring the pollution exposure at 

Fig. 4. Individual-site-scale out-of-sample cross-validation results of MDA8 O3 estimates (μg/m3) from 2013 to 2020 in China.  
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unprecedented spatiotemporal scales, i.e., generating spatially contin-
uous and full-coverage daily surface O3 maps. This allows users to 
quickly obtain more accurate estimates of the distribution of and vari-
ation in O3 pollution at any location, especially in those areas with no or 

minimal ground-based measurements. 
We closely examined a severe surface O3 pollution episode that 

occurred from 23 April to 8 May in 2020 in eastern China (Fig. 8). Before 
25 April, O3 was at a low level across the whole country, then gradually 

Fig. 5. Time series of daily variations of validation results of MDA8 O3 estimates (μg/m3) from 2013 to 2020. Minimum, maximum, and mean values are given in 
each panel. 

Fig. 6. (a-c) STET-model-derived and (d-f) ground-based MDA8 O3 maps on 18 June 2019 (a & d), 11 November 2019 (b & e), and the annual mean map for 2019 (c 
& f) in China. 
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increased. On 28 April, the O3 levels in all “2 + 26” cities (Fig. 1), the 
main air pollution transmission belt in the BTH and its surrounding area 
(“2” refers to Beijing and Tianjin, and “26” refers to 26 prefecture-level 
cities in Hebei Province), had exceeded the ambient air quality standard, 
i.e., MDA8 O3 = 160 μg/m3 (Fig. S9). More severe O3 pollution occurred 
in most other areas on 29 April, with maximum values of 124.0 ± 30.2 
μg/m3 and 181.0 ± 17.8 μg/m3 in China and YRD, respectively (Fig. S9). 
On 30 April, BTH experienced the maximum level of O3 pollution 
(average = 232.1 ± 47.2 μg/m3), remaining high until 2 May, when 
>50% of the cities in China exceeded the daily ozone standard. The air 
quality was significantly improved in northern BTH starting on 3 May, 
but central and southern China still suffered from light to moderate 
pollution, with some cities experiencing severe pollution. This national 
heavy pollution event lasted for nearly a week. 

Surface O3 concentrations were generally low in SCB before 25 April, 
gradually forming into regional pollution on 26 April, polluting the 
Chengdu Plain and southern and northeast Sichuan to varying degrees. 
By 28 April, most cities exceeded the ambient air quality standard. 
Pingyuan and southern Sichuan were heavily polluted, and O3 concen-
trations remained high, reaching a maximum on 3 May, with an average 
value of 184.3 ± 29.8 μg/m3 in SCB (Fig. S9). On 6 May, the polluted air 
moved southward, gradually decreasing in pollution intensity. After 7 
May, accompanied by cooling and precipitation, this episode of ozone 
pollution ended, and the air quality improved to good or excellent. This 
episode of severe regional pollution lasted for about 11 days, the first 
severe ozone pollution event with a long duration and wide coverage in 
Sichuan province since the start of 2020. 

3.2.3. Changes during the COVID-19 pandemic 
The coronavirus disease (COVID-19) broke out in Wuhan, Hubei 

Province at the end of 2019, quickly spreading to the whole country due 
mainly to the Spring Festival (WHO, 2020; Zu et al., 2020). To prevent 
the further spread of COVID-19, Hubei Province went into lockdown 
starting at 10 am on 23 January 2020, soon followed by almost all other 
major cities in China and lasting for about three weeks (Su et al., 2020; 
Tian et al., 2020). To gain further insight into ozone changes associated 
with COVID-19, O3 changes in China are examined before (Period I: 
1–25 January), during (Period II: 26 January to 17 February), and after 
(Period III: 18 February to 31 March) the COVID-19 outbreak. Consid-
ering the increase in O3 in recent years, only compared are the relative 
differences in O3 concentrations across eastern China between 2020 and 
2019 during the three periods (Fig. 9). 

Before the COVID-19 outbreak, O3 concentrations remained near 
historical values, with relative changes within ±10%. During the lock-
down, significant increases in O3 concentrations were seen in most parts 
of eastern China, especially in Hubei Province and its surrounding area, 
showing a relative change of >40%. Because O3 formation rates over 
northern China are under a NOx-saturated regime, a reduction in NOx 
would enhance O3 generation rates (Benish et al., 2020; Liu et al., 2021; 
Shi and Brasseur, 2020). By contrast, an opposite decline in O3 con-
centrations was observed in the PRD, mainly caused by meteorological 
changes and reductions in both VOCs and NOx emissions during the 
lockdown (Wang et al., 2021). In addition, different from northern 
China, O3 formation rates over the PRD are under a NOx-limited regime, 
so the same reduction in NOx would diminish O3 generation rates (Liu 
et al., 2021; Wang et al., 2021). After the COVID-19 outbreak, O3 

Fig. 7. Multi-year seasonal mean MDA8 O3 maps (horizontal resolution = 10 km) averaged over the period 2013–2020 across China.  
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concentrations changed little (within ±10%) compared with concen-
trations in the previous year in most areas of eastern China, indicating 
that life had returned to normal. In southern China, there was a con-
trasting increase in O3 concentrations, likely related to increases in NOx 
and temperature (Wang et al., 2021). The rate of ozone production 
varies nonlinearly with VOC and NOx emissions, and air quality can 

initially worsen when NOx emissions are reduced, but the total amount 
of ozone produced ultimately increases with increasing NOx emissions 
(Lin et al., 1988). Strict NOx controls must eventually be implemented to 
protect the environment and human health. 

Fig. 8. A typical example of a severe O3 pollution event that occurred from 23 April 2020 to 8 May 2020 in eastern China.  

Fig. 9. Relative changes (%) in mean MDA8 O3 concentration (μg/m3) in 2020 (during the COVID-19 epidemic) and 2019 during the same periods: (a) Period I (1–25 
January) before the outbreak, (b) Period II (26 January to 17 February) during the lockdown, and (c) Period III (18 February to 31 March) after the outbreak in 
eastern China. The area outlined in magenta shows the boundary of Hubei Province, and the magenta star shows the location of Wuhan City. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3.2.4. Long-term variations in the recent decade 
Fig. 10 shows the MDA8 O3 trends (μg/m3/yr) during the study 

period (2013− 2020), calculated from monthly anomalies across China. 
Surface O3 concentrations varied from national to regional scales during 
the recent eight years. In general, most areas of the country show sig-
nificant increasing O3 pollution, with an average of 2.49 μg/m3/yr (p <
0.001), especially in central China (> 5 μg/m3/yr, p < 0.05) and the NCP 
(~4.42 μg/m3/yr, p < 0.001). The BTH and YRD regions had the 
stronger increasing trends, i.e., 3.84 and 3.43 μg/m3/yr (p < 0.001), 
respectively. The other two typical regions, i.e., SCB (~1.78 μg/m3/yr, p 
< 0.001) and PRD (~1.41 μg/m3/yr, p < 0.05), show relatively low but 
clear increasing trends. The increase in O3 over city clusters is closely 
associated with a decrease in NOx emissions and PM2.5 concentrations 
(Li et al., 2019; Wang et al., 2020; Wei et al., 2021a; Zhang et al., 2019) 
and meteorological variations (Li et al., 2020a). By contrast, seen are 
opposite weakening trends in several coastal provinces in southern 
China (e.g., Guangxi and Zhejiang). 

Next, we investigated surface O3 variations under the background of 
different implemented environmental policies (Table 2). During the 
Clear Air Action Plan (2013–2017), China showed a significant 
increasing trend of 1.33 μg/m3/yr (p < 0.05), especially in the NCP 
(~4.58 μg/m3/yr, p < 0.001) and BTH (~4.38 μg/m3/yr, p < 0.001) 
regions. Increasing trends were also found in the YRD and SCB regions. 
By contrast, O3 pollution overall declined in the PRD region. During the 
Blue-Sky Defense Plan (2018–2020), O3 concentrations continued to 
increase by 7.2% and 2.5–5.4% in China and typical urban agglomera-
tions, respectively, in 2020 compared to 2017. Considering the entire 
study period, O3 pollution increased the most in China (~4.40 μg/m3/ 
yr, p < 0.001) and most typical regions during the period 2015–2019, 
especially the NCP (~6.33 μg/m3/yr, p < 0.001) and YRD (~5.60 μg/ 
m3/yr, p < 0.001). 

Taking into account the seasonal differences in O3 discussed above, 
we next focus on the spatiotemporal variations in summertime mean 
MDA8 O3 concentrations from 2013 to 2020 over eastern China 
(Fig. 11). Ozone levels remained at a high level in summer among 
different years in China, with an average value of >90 μg/m3. It was 
higher during the period 2017–2019 than in previous years, especially in 
the NCP (>120 μg/m3). This was closely associated with rising tem-
peratures and an increase in the number of hot days in the NCP (Li et al., 

2020a). Changes in O3 have been diverse in the recent eight years, e.g., 
O3 concentrations were higher in 2014 than in 2013 in most areas of 
China, yet generally decreased in 2015, especially in southern China. 
Ozone pollution had increased significantly since 2016, reaching a 
maximum in 2019 (~117.4 ± 23.6 μg/m3), especially in the NCP 
(~159.7 ± 14.1 μg/m3). This may be due to the decreasing PM2.5 con-
centrations by ~15% in the NCP (Li et al., 2020a; Wei et al., 2021a); NOx 
emission reduction is also suspected as an important driving factor of O3 
increase in recent years. However, the dominant reason remains 
controversial. By contrast, in 2020, overall O3 pollution levels decreased 
in China and in most typical regions in China (Table S3). The coordi-
nated control measures of fine PM and O3 implemented by the Chinese 
government (Xiang et al., 2020) may explain this, as well as the ongoing 
effects of COVID-19 in China. These results are highly consistent with 
those previously reported, based on ground-based measurements made 
from 2013 to 2019 (Li et al., 2020a; Lu et al., 2020; Wang et al., 2020). 
Our predicted results also show similar patterns in spatial distribution 
compared to those derived from OMI/Aura satellite observations (Liu 
et al., 2020; Zhang et al., 2020) and air quality model simulations (Hu 
et al., 2016; Xue et al., 2020). 

We also calculated the percentage of O3-polluted days (i.e., MDA8 
O3 > 160 μg/m3) for each grid in eastern China for each year from 2013 
to 2020 (Fig. 12). In 2013 and 2014, O3 pollution was mainly found in 
the eastern and southern provinces of China. Overall, the probability of 
occurrence was generally low (< 10%) in most areas. The area covered 
by O3 pollution generally decreased from 2014 to 2015, especially in 
southern China. From then on, the area covered by O3 pollution 
continuously expanded until 2020, covering most areas of eastern 
China. More importantly, the probability of occurrence of O3 pollution 
increased significantly from 2017 to 2019, especially in the NCP. For 
example, 23% of the days in 2019 exceeded the accepted O3 standard. At 
the regional scale, the proportion of days exceeding the daily O3 stan-
dard also gradually increased in four typical regions, reaching 21%, 
12%, 7%, and 3% in the BTH, YRD, PRD, and SCB regions in 2019, 
respectively (Fig. 13). By contrast, the probability of occurrence of O3 
pollution declined in most areas of northern China (e.g., NCP, BTH, and 
YRD) in 2020. Similar conclusions have been reported in previous 
studies (Liu et al., 2020; Xue et al., 2020; Zhan et al., 2018). 

Fig. 14 shows the evolution of MDA8 O3 concentrations for each year 

Fig. 10. Linear MDA8 O3 trends (μg/m3/yr) calculated from de-seasonalized monthly MDA8 O3 anomalies from 2013 to 2020 across China. The surrounding panels 
show the variations of monthly MDA8 O3 anomalies in (a) China and (b-f) five typical regions. 
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at the “2 + 26” cities in northern China, where pollution is of particular 
concern to the public. Until 2015, O3 concentrations were generally 
lower than 120 μg/m3 in most cities, with much fewer days exceeding 
the air quality standard (i.e., MDA8 O3 = 160 μg/m3) than those after 
2016. Over time, the number of days with high O3 concentrations 
gradually increased from year to year. In particular, a significant in-
crease in O3 concentration was captured from May to August in each 
year from 2017 to 2019. The MDA8 O3 concentrations in almost all cities 
frequently exceeded 200 μg/m3, indicating a severe risk of ozone 
exposure. 

3.3. Discussion 

3.3.1. Uncertainty and error analysis 
We first investigated the effects of varying the number of training 

samples on modeled surface O3 concentrations. For this purpose, we 

gradually increased the proportion of training samples from 50% to 90% 
for model building, with the rest of the samples used for validation by 
applying different N-fold (i.e., 2, …, 10) CV methods using 2020 data 
from China (Table S4). Overall, with an increase in training samples, the 
overall accuracy and spatial predictive ability of the STET model grad-
ually improved, with increasing CV-R2 values and decreasing estimation 
uncertainties. Small changes in each evaluation indicator were found, 
even when the training sample changed by as much as 40%, indicating 
that our model is stable and robust (e.g., CV-R2 > 0.90 and RMSE <14.1 
μg/m3). This is mainly attributed to the unique advantage of the full- 
coverage mapping, which provides a large enough sample size to 
cover most surface O3 conditions and variations across mainland China. 
It also benefits from the robustness of ensemble learning, which has a 
strong anti-noise ability (Breiman, 2001; Geurts et al., 2006). 

We trained and built separate models for each characteristic region 
and compared their prominent features (Fig. S10) and model 

Table 2 
Statistics describing MDA8 O3 trends (μg/m3/yr) and relative changes (%) in annual mean MDA8 O3 concentrations (μg/m3) from 2013 to 2020 in China and in each 
typical region.  

Region 2013–2020 2013–2017 2015–2019 2017 2020 2017–2020 

Trend (p) Trend (p) Trend (p) Mean Mean Changed by 

China 2.49 (<0.001) 1.33 (<0.01) 4.40 (<0.001) 91.8 ± 10.1 98.4 ± 10.8 7.2% 
NCP 4.42 (<0.001) 4.58 (<0.001) 6.33 (<0.001) 108.8 ± 3.4 113.5 ± 4.1 4.3% 
BTH 3.84 (<0.001) 4.78 (<0.001) 4.90 (<0.001) 104.8 ± 4.7 107.4 ± 7.2 2.5% 
YRD 3.43 (<0.001) 2.94 (<0.01) 5.60 (<0.001) 102.8 ± 8.6 108.4 ± 8.2 5.4% 
PRD 1.41 (<0.001) − 0.72 (0.56) 4.38 (<0.001) 89.8 ± 5.3 94.2 ± 6.0 4.9% 
SCB 1.78 (<0.001) 2.37 (<0.001) 2.14 (<0.001) 82.9 ± 5.7 85.3 ± 5.8 2.8% 

BTH: Beijing-Tianjin-Hebei; NCP: North China Plain; PRD: Pearl River Delta; SCB: Sichuan Basin; YRD: Yangtze River Delta. 
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Fig. 11. Spatial distributions of summertime mean MDA8 O3 concentration (μg/m3) from 2013 to 2020 in eastern China.  
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performances (Table S5) against the national model. The top-scoring 
features for the regional models are similar to those for the national 
model, e.g., ERA5 DSR, TEM, ET, RH, and OMI NO2 and O3 (Fig. S2). 
However, there were numerical differences in the importance scores for 
each variable. The model had different accuracies and spatial predictive 
abilities at the regional scale, with causes closely related to the density 
and spatial distribution of ground-level monitoring stations. 
Geographic, meteorological, and population conditions are also 

different in each region. The performance of the national model was 
generally better with smaller estimation uncertainties than any one 
regional model, but differences in the statistical metrics were small. The 
national model involves a much bigger number of data samples that can 
cover more O3 conditions. It can also consider the impact of adjacent 
regions, especially transition areas. Full-coverage mapping provides the 
richest dataset to train a robust model. 

3.3.2. Comparison with related ozone datasets 
We next compared our ChinaHighO3 dataset with long-term atmo-

spheric reanalysis products generated from chemical models, including 
MERRA-2 and ERA5, which have similar spatiotemporal coverages. For 
this purpose, 3-h MERRA-2 and 1-h ERA5 O3 mixing ratio (unit: kg kg− 1) 
simulations at horizontal resolutions of 0.625◦ × 0.5◦ and 0.25◦ × 0.25◦

were collected to calculate daily 14:00 local time MDA8 O3 concentra-
tions at the ground level (μg/m3) for the year 2020 in China, validated 
with corresponding ground-based measurements (Fig. S11). The 
ground-level O3 simulations from the chemical reanalysis products are 
poor, with large uncertainties (e.g., R2 < 0.1 and RMSE >47 μg/m3). The 
main reason is that the chemical reactions in the assimilation models are 
substantially simplified, mainly reflecting the impact of dynamic pro-
cesses on stratospheric and tropospheric O3 (Knowland et al., 2017). Our 
surface O3 estimates are highly consistent with ground-based measure-
ments (e.g., R2 = 0.96 and RMSE = 8.6 μg/m3), a significant improve-
ment over the chemical reanalysis products. 

We also compared the O3 estimates derived from our ensemble 
approach and from basic kriging techniques by simply interpolating data 
from all available O3 stations in China. MDA8 maps obtained by two 
widely used kriging techniques, namely, ordinary kriging and universal 

Fig. 12. Spatial distributions of the percentage of days exceeding the ambient O3 standard (i.e., MDA8 O3 concentrations >160 μg/m3) from 2013 to 2020 in China.  

Fig. 13. Percentage of days exceeding the ambient air quality standard (i.e., 
MDA8 O3 concentrations >160 μg/m3) from 2013 to 2020 in each 
typical region. 
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kriging, have similar spatial patterns and can basically capture infor-
mation about surface O3 (Fig. S12a–b). They are in good agreement with 
our results in southeastern China, with small differences within ±5%. 
However, significant differences >40% are seen in central, southwest, 
and northwest China (Fig. 12c–d). This is closely associated with the 
decreasing density of ground-based monitoring stations that the kriging 
methods are highly dependent on. In particular, severe block noise easily 
occurs in areas with few or no observation stations (areas outlined in red 
in Fig. S12). In addition, kriging results change smoothly in space in 
areas with complex terrains (e.g., southwest China). The main reason is 
that kriging only considers spatial correlations among observation sta-
tions, neglecting natural and human factors that impact air pollution 
(Fig. S2). Ensemble learning can make up for this deficit by making full 
use of data mining to build a robust conversion model from abundant, 
potentially influential factors on air pollution. Cross validation further 
illustrates that our model can obtain more reliable O3 predictions by 
significantly decreasing the uncertainties by 16–28% compared to 

kriging techniques. 

3.3.3. Comparison with related studies 
We compared results from our study with those from previous 

related studies, which also used the same out-of-sample 10-CV approach 
on MEE network O3 observations for the same study period focusing on 
China (Table 3). Our algorithm yields a higher accuracy with smaller 
estimation uncertainties (CV-R2 > 0.83, RMSE <15 μg/m3) than the RF 
(CV-R2 = 0.69, RMSE = 26.0 μg/m3; Zhan et al., 2018), XGBoost (CV-R2 

= 0.78, RMSE = 21.47 μg/m3; Liu et al., 2020), data fusion (CV-R2 =

0.70, RMSE = 26.20 μg/m3; Xue et al., 2020), GWR (CV-R2 = 0.77, MAE 
= 8.14 μg/m3; Zhang et al., 2020), and LUR/BME (CV-R2 = 0.80, RMSE 
= 23.5 μg/m3; Chen et al., 2020) models at different temporal scales for 
the same study period. 

In addition, different studies have relied on different main pre-
dictors, i.e., key variables input to the model for estimating surface O3 
concentrations, such as satellite-based total-column O3/NO2 or CH2O, 

Fig. 14. Heat maps of MDA8 O3 concentration (μg/m3) for each year from 2013 to 2020 at the “2 + 26” cities in China.  

Table 3 
Comparison of model performances based on previous O3 studies focused on China as a whole.  

Model Temporal resolution Validation Study period Main Predictors Missing values Literature 

R2 RMSE MAE 

RF Daily 0.69 26.00 – 2015 MERRA2 Yes Zhan et al. (2018) 
XGBoost Daily 0.78 21.47 – 2013–2017 OMI O3, MERRA-2 Yes Liu et al. (2020) 
Data fusion Daily 0.70 26.20 16.70 2013–2017 CTM simulations Yes Xue et al. (2020) 
GWR Monthly 0.77 – 8.14 2014 OMI NO2, CH2O Yes Zhang et al. (2020) 
LUR/BME Daily 0.80 23.50 – 2015–2017 In situ observations Yes Chen et al. (2020) 
STET Daily 0.78 21.16 14.09 2015 

ERA5 DSR and TEM 

No This study   
0.81 20.27 13.38 2013–2017     
0.83 18.88 12.72 2015–2017    

Monthly 0.90 12.43 8.82 2014   

LUR/BME: land-use regression/Bayesian maximum entropy; CTM: chemical transport model; GWR: geographically weighted regression; RF: random forest; STET: 
space-time extremely randomized trees; XGBoost: eXtreme Gradient Boosting. 
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MERRA-2 reanalysis data, model simulations, or in situ observations. 
These other O3 datasets contain a large number of missing values at 
coarse or false (e.g., forced resampling) spatial resolutions (i.e., 
0.25◦–0.625◦), limited by input data sources. Our study overcomes these 
issues and is an improvement on previous studies, providing a daily full- 
coverage (spatial coverage = 100%) and true-spatial-resolution (~0.1◦

× 0.1◦) O3 dataset for China generated from two main predictors, i.e., 
DSR and TEM. The dataset developed here constitutes a nearly contin-
uous record of ground-level O3 concentrations from 2013 to 2020 in 
China. 

4. Summary and conclusions 

Ground-level O3 is a major pollutant affecting human health. To 
compensate for the sparse and inhomogeneous coverage of ground- 
based O3 networks and the low data quality, missing values, and low 
resolution of many existing satellite-based O3 estimates, we applied a 
spatiotemporal extremely randomized trees machine-learning model to 
develop a long-term, near-surface ozone product that can overcome or 
lessen the above limitations. Besides O3 training data, input variables 
include surface solar radiation downwards, air temperature, meteoro-
logical variables, land use information and topography, population 
distribution information, and a pollution emission inventory. The MDA8 
O3 product (ChinaHighO3) with full coverage across China at a spatial 
resolution of 10 km from 2013 to 2020 was generated. 

The estimates were evaluated against surface observations at varying 
spatiotemporal scales and compared with previous related studies. CV 
results illustrate that our model has a high overall accuracy (spatial 
predictive ability), with average out-of-sample (out-of-station) CV-R2, 
RMSE, MAE, and MRE values of 0.87 (0.80), 17.10 (21.10) μg/m3, 11.29 
(13.87) μg/m3, and 18.38 (23.18) %, respectively. Note that currently, 
we can only evaluate the surface O3 predictions by removing parts of the 
base dataset using different 10-CV approaches. Also, note that assessing 
the accuracy of predictions in locations where O3 measurements have 
never been made still remains a challenging task. Overall, the China-
HighO3 product is superior to existing ones in terms of model accuracy, 
spatial coverage and resolution, and data record length. 

Benefiting from the unique advantages of the ChinaHighO3 dataset, a 
recent (April to May 2020) short-term national and regional severe O3 
pollution event was well captured. Also observed was a rapid increase in 
O3 pollution during the COVID-19 lockdown, especially in Hubei and 
surrounding provinces (e.g., an increase of >30%), followed by a return 
to normal levels after the lockdown ended in China. This was not a 
repudiation of NOx controls. A long-term analysis also showed that O3 
concentrations have significantly increased by 2.49 μg/m3/yr (p <
0.001) in China from 2013 to 2020, especially in the North China Plain 
(~4.42 μg/m3/yr, p < 0.001). In addition, summertime O3 concentra-
tions after 2017 were much higher than in previous years due to rising 
temperatures and an increase in the number of hot days. The number of 
days exceeding the ambient O3 air quality standard (MDA8 O3 = 160 μg/ 
m3) and the areal extent of high O3 levels were also shown to be grad-
ually increasing across China, especially in the “2 + 26” cities in the 
North China Plain. Our ChinaHighO3 dataset will thus be useful for 
related studies on air pollution in China, especially those studies focused 
on environmental health. 

In this study, daily MDA8 O3 concentrations were first estimated to 
examine daily and interannual changes in surface O3 in China. Since 
hourly ground measurements and core input predictors (i.e., down-
welling solar surface radiation and air temperature) are available, our 
model can be employed to reasonably predict hourly surface O3 con-
centrations. This will help toward reproducing and investigating the 
diurnal patterns of and variations in surface O3. Considering similarly 
available ground measurements and after determining the appropriate 
core input predictors (e.g., aerosol optical depth and tropospheric gas 
column amounts), our model can also be applied and extended to esti-
mate other species of ground-level air pollutants (e.g., PM, NO2, SO2 and 

CO). Our future studies will focus on this. 

Data availability 

The ChinaHighAirPollutants (CHAP) dataset is open access and 
freely available to all users from https://weijing-rs.github.io/product.ht 
ml. The ChinaHighO3 dataset is freely available at https://doi.org/10. 
5281/zenodo.4400042. 
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