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Abstract— PM2.5 is hazardous to human health, and high-
quality data are thus needed on a routine basis. An attempt
is made here to improve the accuracy of near-surface PM2.5

estimates using the newly released aerosol product derived from
the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite
with the Deep Blue retrieval algorithm. A high-quality PM2.5

data set is generated at a spatial resolution of 6 km from
2013 to 2018 by applying the space-time extremely randomized
trees (STET) model, which also aims to extend the Earth
Observing System (EOS) long-term PM2.5 data records in China.
The PM2.5 estimates are highly consistent with ground-based
measurements, with an out-of-sample cross-validation coefficient
of determination (CV-R2) of 0.88, a root-mean-square error
(RMSE) of 16.52 µg/m3, and a mean absolute error of 10 µg/m3 at
the national scale. Spatiotemporal PM2.5 variations at monthly
scales are also well captured (e.g., R2 = 0.91–0.94, RMSE =
5.8–11.6 µg/m3). PM2.5 varied greatly at regional and seasonal
scales across China. Benefiting from emission reduction and air
pollution controls, PM2.5 pollution has reduced dramatically in
China with an average of −5.6 µg/m3/yr−1 during 2013–2018.
Significant regional reductions are also seen, in particular, in
the Beijing–Tianjin–Hebei region (−6.6 µg/m3/yr−1, p < 0.001),
and the Deltas of Yangtze River (−6.3 µg/m3/yr−1, p < 0.001)
and Pearl River Delta (−4.5 µg/m3/yr−1, p < 0.001). Our
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study improved the accuracy of near-surface PM2.5 estimates in
terms of their spatiotemporal variations at a relatively long-term
record, which is important for future air pollution and health
studies in China.

Index Terms— Aerosol optical depth (AOD), China, deep blue
(DB), PM2.5, Visible Infrared Imaging Radiometer Suite (VIIRS).

I. INTRODUCTION

A IR pollution has a great influence on atmospheric visi-
bility, human health, climate, and the ecosystem and has

thus been a major global problem [1]–[5]. Atmospheric PM2.5

is of particular concern to human health. The World Health
Organization has reported that 90% of the world’s population
live in dangerous environments shrouded in PM2.5, which is
highly associated with cardiovascular, cerebrovascular, and
respiratory diseases [6]–[10], increases in premature mortal-
ity [11]–[14], the harming of fetuses during pregnancy [15],
[16], and causing brain problems and memory decline [17]. In
particular, China has experienced increasing levels of PM2.5

pollution in recent decades caused by rapid urbanization and
industrialization [18], [19]. Therefore, high-quality PM2.5 data
are urgently needed, a key for understanding the formation and
control of air pollution and their effects on human health.

While there have existed some ground-based PM observa-
tion networks in China, they are generally of short durations
and highly inhomogeneous. In contrast, remote sensing tech-
nology allows for deriving ground-level PM2.5 distributions on
a global scale at uniform resolutions. Given its long-term data
records since 2000, short revisiting period, and mature aerosol
retrieval algorithms, MODIS aerosol products, i.e., dark target
(DT) and deep blue (DB) products at 3–10-km spatial resolu-
tion, have been widely used in PM2.5 estimations [20]–[23].
Later, Visible Infrared Imaging Radiometer Suite (VIIRS)
was launched on October 28, 2011, and NOAA has released
a series of operational VIIRS Environmental Data Records
(EDRs), including daily aerosol products (VAOOO) at a 6 km
spatial resolution, generated using a DT-like algorithm [24].
These data have been available to the public since May 2012.

Wu et al. [25] proposed a spatiotemporal statistical model
to derive PM2.5 concentrations from VIIRS VAOOO aerosol
optical depth (AOD) products in the Beijing–Tianjin–Hebei
(BTH) region of China. The PM2.5 estimates are well related to
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ground measurements with an out-of-sample cross-validation
(CV)-R2 of 0.72. Pang et al. [26] forecast PM2.5 concentra-
tions by assimilating VIIRS VAOOO and Geostationary Ocean
Color Imager (GOCI) AOD products using a 3-D variational
assimilation system in the BTH and Pearl River Delta (PRD)
regions with out-of-sample CV-R2 values of 0.62 and 0.51,
respectively. Yao et al. [27] used a time-fixed-effects regres-
sion model and compared the model performance in daily
PM2.5 estimates using MODIS DT and VIIRS VAOOO AOD
products in the BTH region with varying out-of-sample CV-
R2 values ranging from 0.55 to 0.72. Later, they proposed
a spatially structured adaptive two-stage model to obtain the
PM2.5 concentrations in China with an out-of-sample CV-R2

of 0.60 [28].
However, these traditional statistical regression methods are

difficult to construct robust PM2.5-AOD relationships due to
the complex sources affecting PM2.5 and weak data-mining
abilities. In addition, aerosol remote sensing still faced great
challenges over bright and heterogeneous surfaces, showing
large estimation uncertainties and numerous missing val-
ues [29], [30]. Therefore, the data quality of PM2.5 estimates
derived from the VIIRS VAOOO AOD products is much
poor (i.e., CV-R2 = 0.51–0.72). In particular, there are few
studies on PM2.5 estimates using the VIIRS aerosol products.
As an extension and improvement on the AVHRR and the
MODIS, VIIRS will have great application potential for future
atmospheric environment monitoring. In addition, the widely
used MODIS satellites have been in service for more than
20 years, although still in operation, well exceeding its design
life. On February 6, 2018, NASA released the VIIRS AERDB
products at the same 6-km resolution by applying the MODIS
DB algorithm [31] to extend the Earth Observing System
(EOS) long-term aerosol data records [32]. Different from
the VAOOO DT algorithm, the DB algorithm allows aerosol
retrieval from the darkest to the brightest surfaces, resulting in
an AOD data set with a more complete spatial coverage [33].

Bearing the above problems in mind, the main objective of
this study is to improve the accuracy of ground-level PM2.5

estimates and to extend the EOS long-term PM2.5 data records
in China from the VIIRS satellite. For this purpose, based on
our previous study [34], the space-time tree-based machine
learning (ML) models are involved but with several improve-
ments, including the variable update according to the physical
mechanisms and improved determination of spatiotemporal
information. Then, the high-quality PM2.5 data set at a 6-km
resolution from 2013 to 2018 in China is obtained from the
newly released VIIRS DB AOD product. The spatiotemporal
variations of PM2.5 pollution in China were also investigated.
In addition, an in-depth analysis of the model performance
and sensitivity is also performed.

II. DATA SOURCES

A. PM2.5 in Situ Data

In this study, hourly PM2.5 measurements from 2013 to
2018 are collected here, and the number of monitoring sta-
tions has been increasing in this period: 835, 940, 1480,
1484, 1568, and 1583 for 2013–2018, respectively, evenly
distributed across Eastern China. Most land surface types

Fig. 1. Spatial distributions of surface PM2.5 (pink dots) and AERONET
(red dots) monitoring stations in China.

exist, including three typical urban agglomerations located
in eastern China, i.e., the BTH region, the Yangtze River
Delta (YRD) region, and the PRD region, where human
activities are intensive (Fig. 1). In our study, similar to
previous studies [20]–[23], [28], all hourly measurements are
averaged to obtain the daily PM2.5 concentrations at each
monitoring station in a day of one year. In addition, if there are
two or more PM2.5 monitoring stations in a pixel, all available
PM2.5 measurements are averaged.

B. VIIRS DB AOD Product

In this study, the VIIRS AERDB DB Level 2 AOD product
(Version 1) at a spatial resolution of 6 km from 2013 to 2018,
covering entire China, is employed. Different from the VIIRS
DT product, it is generated based on the DB algorithm over
land [32] and the Satellite Ocean Aerosol Retrieval (SOAR)
algorithm over the ocean [35]. The main algorithm difference
is the determination of the surface reflectance, which allows
for aerosol retrievals regardless of surface brightness. It works
in a similar way to the MODIS second-generation DB algo-
rithm [31] but with main updates in the radiative transfer
model, smoke detection, and aerosol type assumption [32].
Here, only AERDB DB AOD retrievals (550 nm) passing the
quality assurance are used as the main independent variable
for retrieving the ground-level PM2.5 concentrations.

C. Auxiliary Influence Variables

There are numerous (natural and human) factors affecting
the conversion from satellite AOD to near-surface PM2.5

concentrations. Meteorological conditions show obvious influ-
ences on air pollution, in which boundary layer height
(BLH) is selected to reflect the vertical distributions of
aerosol particles [36]–[39]. Relative humidity (RH) and tem-
perature (TEM) are two main factors affecting the hygro-
scopic growth of aerosol particles [39]–[41]. In addition,
precipitation (PRE), evaporation (ET), and surface pres-
sure (SP) can promote the production or removal of PM2.5

[34], [42], [43]. Wind speed (WS) and wind direction
(WD) can affect the transmission of PM2.5 from differ-
ent directions [38], [44]. Meanwhile, land-use cover (LUC),
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Normalized Difference Vegetation Index (NDVI), and Digital
Elevation Model (DEM) are selected to reflect the surface
conditions. Because the land surface types vary greatly across
China, the terrain variations can affect the diffusion of air
pollutants [44], [45]. Anthropogenic aerosols are another
main source of PM2.5, in which the population distribution
(POP) and nighttime light (NTL) are selected to represent the
density of human activities. Furthermore, pollutant emissions
(i.e., PM, NH3, NOx, and SO2) originating from industry,
transportation, power, and residences with small uncertain-
ties obtained from the MEIC inventory are employed to
characterize the PM2.5 direct emissions or generations via
chemical reactions [46], [47]. Therefore, a total of 18 auxiliary
independent variables are selected in this study. All auxiliary
data are first resampled to a uniform 6 km resolution to be
consistent with the VIIRS DB AOD product.

III. METHODOLOGY

A. Model Introduction and Adjustment

In this study, four popular tree-based ML methods, includ-
ing the decision tree (DCT), gradient tree boosting (GDBT),
random forest (RF), and extremely randomized trees (ERT),
are considered. The decision tree is a binary or nonbinary tree
structure, which is a simple and easy-to-use nonparametric
regressor or classifier that does not need any prior hypothesis
about the data. There are three main kinds of decision-tree-
building algorithms, including the ID3, C4.5, and CART. The
GDBT model is based on the boosting sampling and the CART
algorithm, which has a good mixed-data processing ability,
strong prediction ability, and robustness to outliers in outputs.
However, all learners are ordered, making parallel computing
difficult [48]. The RF model is based on the bagging sampling
and ID3 and C4.5 algorithms, and all learners are totally
independent, allowing for parallel computing. It can efficiently
process a large number of input data and generate an unbiased
estimate and is not easy to be overfitted [49]. The ERT
model works like the RF model, but all samples are used
in the data sampling in extra-trees building, and besides the
attribute, splitting is completely random [50]. For the tree-
based ensemble learning methods, there are five main steps
taken during the model training.

1) Sample Random Selection: A new sample subset (n)
is randomly selected from a given training sample set
(N) using different data sampling methods, such as
bagging or boosting.

2) Feature Random Selection: m attributes are randomly
selected from a total of M features meeting the condition
m � M . The best feature is then determined as the split
attribute of the node according to a strategy, such as
information gain (rate) or the Gini index.

3) Model Training: For tree-based ML models, two main
hyper-parameters, i.e., the maximum number of weak
learners and the maximum depth of the decision tree,
need to be set, and the optimal combination is deter-
mined by the iterative method.

4) Decision-Tree Construction: Based on the above-
selected samples and features, a decision tree can be

Fig. 2. VIFs (red dots) and sorted importance scores (blue bars) of each
predictor in PM2.5 estimates in China.

established by selecting an appropriate method such as
ID3, C4.5, or CART.

5) Final Result Output: Repeat the above three steps h
times to generate H decision trees. Last, for the regres-
sion problem, the final result is calculated based on
the mean value of the outputs of all decision trees.
Detailed information can be found in their algorithm
documents [48]–[50].

However, air pollution is spatiotemporally heterogeneous,
i.e., PM2.5 concentrations change dramatically over space
and time, an issue that most previous studies have always
neglected. Therefore, spatiotemporal information is introduced
into these tree-based ML models to improve the PM2.5–AOD
relationships in China. Different from our previous study [34],
the spatial term (Space) is further optimized and represented
by the latitude and longitude of a point in space and its great-
circle distances to four corners, i.e., top left, top right, bottom
right, and bottom left, as well as the center of the defined
rectangle study region using the Haversine approach [34].
They can more accurately describe the spatial autocorrelation
and difference of a point in space [51]. The temporal term
(Time) is simplified as a day of the year to identify each row
of data records on different days in a year since air pollution
is different every day. Thus, these corresponding models by
involving the spatiotemporal information, i.e., STDT, STGT,
STRF, and space-time extremely randomized trees (STETs),
are defined.

Meanwhile, five traditional statistical regression models,
i.e., the multiple linear regression (MLR) model, the lin-
ear mixed-effect (LME) model, the geographically weighted
regression (GWR) model, the geographically and temporally
weighted regression (GTWR) model, and the two-stage model,
are also employed for comparison.

Due to a large number of selected variables, there will
be inevitable multivariable collinearity problems that most
models are susceptible to, especially for traditional statistical
regression models. Therefore, the variance inflation factor
(VIF) approach is first applied to see which level the predictors
are independent of each other [10]. The diagnosis results show
that the VIF values between LUC and NTL are extremely
high >120, indicating strong collinearities. By contrast, most
of the other selected predictors are independent of each other
with small VIF values <10 (Fig. 2). Therefore, we prefer to
remain the factors with higher temporal resolutions (i.e., NTL)
to avoid multicollinearity among the predictors.
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In addition, different from other traditional statistical regres-
sion and artificial intelligence models, the tree-based ensemble
ML approaches provide a new and effective way, i.e., impor-
tance score, to quantitatively measure the importance of each
input predictor during the model training using the Gini
Index [34], [52]. This procedure can minimize the overfit-
ting issue and improve the model efficiency. In this study,
the process is done for all tree-based ensemble learning
models, and the orders of the sorted importance scores of
each predictor in PM2.5 estimates in China are the same
(Fig. 2). AOD is the most important variable, with an average
importance score of 24%. Seven meteorological variables (i.e.,
ET, BLH, TEM, RH, WS, WD, and SP) and two surface-
related variables (i.e., NDVI and DEM) show large influences
on PM2.5 estimates. In addition, four pollutant emissions (i.e.,
NH3, PM, SO2, NOx) are also important. By contrast, the
remaining four variables (i.e., NTL, POP, PRE, and LUC) are
less important, so they are excluded from each model.

Therefore, five traditional statistical regression methods and
five original tree-based ML models with the same input
variables can be expressed as

PM2.5 = fx [AOD, BLH, ET, RH, SP, TEM, WD,

WS, NDVI, DEM, NH3, NOx, PM,SO2]. (1)

However, five newly defined space-time tree-based ML
models with two additional inputs of spatial and temporal
information can be expressed as

PM2.5st = fSTx [AODst, BLHst, ETst, RHst, SPst, TEMst, WDst, WSst,

NDVIst, DEMst, NH3st,NOxst, PMst, SO2st, Space, Time]. (2)

B. Evaluation and Analysis Approaches

Here, the widely used out-of-sample tenfold cross-validation
(10-CV) method [53] is selected to evaluate the PM2.5

estimates. However, our study aims to retrieve PM2.5 con-
centrations in areas where ground monitoring stations are
not available. Thus, an additional independent out-of-station
10-CV approach is applied to evaluate the spatial prediction
ability of the model [34], [54]. It is performed based on the
PM2.5 monitoring stations using the 10-CV approach, i.e.,
the PM2.5 monitoring stations are randomly divided into ten
groups, then the data samples collected from 9 groups and
the remaining 10th group of monitoring stations are used
for training and validation, respectively. It is done ten times,
in turn, to ensure all the monitoring stations are tested. This
method can ensure that the training and testing samples are
made up of different spatial points in different locations, where
the surface and atmospheric conditions may be different,
which would influence the results.

For spatiotemporal analysis, daily PM2.5 values are averaged
to generate monthly PM2.5 maps, and then they are used to
synthesize the annual and seasonal PM2.5 maps in China. The
area-weighting approach is selected to calculate the spatial
coverage. PM2.5 trends are calculated from deseasonalized
monthly PM2.5 anomalies, and the significance of the trends
is determined using the two-sided test [55].

Fig. 3. Validation and comparison of (a) VIIRS DB (6 km), (b) VIIRS
DT (6 km), (c) MODIS DT (3 km), and (d) MODIS MAIAC (1 km) AOD
products from 2013 to 2018 in China.

IV. RESULTS AND DISCUSSION

A. Validation and Comparison of Different AOD Products

We first validate and compare the VIIRS DB (6 km)
and DT (6 km), MODIS DT (3 km) and MAIAC (1 km)
AOD products against ground-based measurements collected
at 22 AERONET sites (containing nine urban and 11 vegetated
sites) in China (Fig. 3) using the spatiotemporal matching
method [33]. Results show that VIIRS DB retrievals are highly
related to AERONET AODs (R = 0.95) with a mean absolute
error (MAE) of 0.09, and 84.34% of the matchups falling
within the commonly used expected error (EE, ± [0.05% ±
20%]). By contrast, VIIRS DT and MODIS DT (3 km)
retrievals yield much lower accuracy with larger MAEs of
0.19, and only 52% of them falling within the EE, showing
significant overestimations. The retrieval errors mainly come
from urban areas due to the inaccuracy of surface reflectance
estimates. In particular, the sample size has been reduced
by 1.5–3.3 times because the DT algorithm cannot work
over bright surfaces, showing a large number of missing
values [29], [30]. However, the number of data samples of
VIIRS DB product (N = 4724) is larger than the MODIS
MAIAC product (N = 4604), in addition, VIIRS DB AODs
show a comparable accuracy with MODIS MAIAC AODs but
with a higher proportion of the retrievals falling within the
EE. These results illustrated that the VIIRS DB product has
a slightly wider spatial coverage and a higher accuracy, and
thus it is selected here to improve the PM2.5 estimations.

B. Model Validation and Comparison

Since there are few studies working on PM2.5 estimates
using the VIIRS AOD products, five traditional statistical
regression models, four original and four space-time tree-based
ML methods are selected to test and compare their perfor-
mance in PM2.5 estimates in China using the same input data
in 2018 (Table I). Among five statistical regression models,
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TABLE I

COMPARISON OF MODEL PERFORMANCES OF DIFFERENT MODELS IN
CHINA USING THE SAME INPUT DATA IN 2018

the MLR model works the worst with the lowest CV-R2 values
and largest root-mean-square error (RMSE) and MAE values,
which significantly underestimated the PM2.5 concentrations.
However, the performance of the GWR model is somewhat
better with higher CV-R2 values and smaller RMSE and MAE
values, mainly because the spatial heterogeneity of PM2.5 is
considered. The LME model performs even better with overall
better evaluation indicators because the mixed-effects among
different influence factors are considered. The two-stage model
performs much better with improved validation results because
it combines the advantages of the GWR and LME models. The
GTWR model performs the best with the highest CV-R2 values
and smallest uncertainties, mainly due to the involvement of
both spatial and temporal information.

Regarding tree-based ML methods, the original DCT and
GDBT models perform poorly with overall low CV-R2 values
and large estimation uncertainties. However, the RF model
performs much better than all the above-mentioned models
with higher CV-R2 values and smaller RMSE and MAE values
because of its more effective and random data sampling and
feature selection [49]. In addition, the ET model is overall
better than the RF model due to its stronger randomness in
feature selection and node splitting during the decision-tree
building [50]. However, when considering the spatiotemporal
characteristics of PM2.5 concentrations, the performance of
all tree-based ML approaches has significantly improved with
all better evaluation indicators. In general, the STET model
shows the best performance in estimating and predicting PM2.5

concentrations with the highest CV-R2 values and the smallest
uncertainties among all the selected models.

C. Validation of PM2.5 Estimates From 2013 to 2018

In this study, the STET model is developed based on all
the data samples for each year from 2013 to 2018 separately.
Fig. 4 shows the out-of-sample and out-of-station CV results
of daily PM2.5 estimates against ground measurements for each
year from 2013 to 2018 in China. It should be noted that there
are some numerical differences in evaluation metrics, possibly
due to different ranges of PM2.5 loadings among different
years. The sample-based CV results show that the PM2.5

estimates are highly correlated with the surface observations
with CV-R2 values ranging from 0.86 to 0.89 among different
years across China. Most of the data samples are concen-
trated along the regression lines of strong slopes 0.83–0.87
and small y-intercepts of 6.6–12.5 µg/m3, especially in the
range of 0–200 µg/m3, which has the highest distribution
density. The estimation uncertainties are generally small,
with average RMSEs and MAEs of 11.4–22.6 µg/m3 and
7.1–14 µg/m3, respectively. In general, the overall accuracy of
the STET model reaches up to 0.88 with an average RMSE of
16.52 µg/m3 and an MAE of 10 µg/m3 during 2013–2018 in
China, respectively.

For station-based CV results, the PM2.5 predictors are well
consistent with ground measurements with varying CV-R2

from 0.83 to 0.88, showing overall low prediction uncertainties
with RMSE and MAE values of 12.1–23.8 and 7.7–15 µg/m3

over the years across China. Similarly, the regression lines
also have strong slopes of 0.82–0.86 and small y-intercepts
of 7.1–13.3 µg/m3. In general, the STET model has a strong
spatial prediction ability with a CV-R2 equal to 0.87, and
the average RMSE and MAE are 17.53 and 10.86 µg/m3,
respectively. Furthermore, compared with the out-of-sample
CV results, the out-of-station CV results decrease smaller in
most evaluation indexes, further demonstrating the robustness
of the model.

Fig. 5 shows the regional CV results over Eastern China
and three typical urban agglomerations during 2013–2018.
The model is highly accurate with sample- and station-based
CV-R2 values of 0.89 and 0.88, respectively, showing overall
small uncertainties (i.e., RMSE = 16.39 and 17.12 µg/m3)
over eastern China. The model yields the highest CV-R2

(∼0.89–0.9) but the largest RMSE (>19 µg/m3) and MAE
(>11 µg/m3) values in the BTH region due to severe air
pollution with a large number of data samples >300 µg/m3.
Followed by the YRD region (e.g., CV-R2 = 0.88–0.89,
RMSE = 13–14 µg/m3). By contrast, the model yields the
lowest CV-R2 (<0.86) and the smallest RMSE (<12 µg/m3)
and MAE (<8 µg/m3) values in the PRD region where
air pollution is much slighter with most days <150 µg/m3.
Besides the low air pollution, more frequent clouds (e.g.,
reduce the number of the data samples) and wetter climate
conditions (e.g., abundant precipitation and high RH) further
increase the difficulties of PM2.5 estimates in China [34], [38].

Fig. 6 shows the individual-scale CV results from 2013 to
2018 across China. For sample-based CV results, our daily
PM2.5 estimates are highly consistent with ground measure-
ments with small uncertainties at most sites in China, showing
overall small uncertainties, especially the North China Plain
(e.g., CV-R2 > 0.9). By contrast, several monitoring stations
located in Northwest China show overall poor accuracy with
low CV-R2 and large RMSE values because of the sparse site
distributions and high PM2.5-polluted conditions. In general,
approximately 72% and 83% of the monitoring stations have
CV-R2 > 0.8 and RMSEs <18 µg/m3, respectively. Fur-
thermore, the station-based CV results show similar spatial
patterns with the sample-based CV results, but the CV-R2

values are slightly smaller, yet the RMSE values are larger
overall at most stations across China. In general, except for
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Fig. 4. Density scatterplots of (a–f) out-of-sample and (g–l) out-of-station CV results of daily PM2.5 estimates from 2013 to 2018 in China.

Fig. 5. Density scatterplots of regional (a)–(d) out-of-sample and (e)–(h)
out-of-station CV results of daily PM2.5 estimates during 2013–2018.

Fig. 6. Spatial distributions of (a) and (b) out-of-sample and (c) and (d)
out-of-station CV results of daily PM2.5 estimates from 2013 to 2018 at each
monitoring station in China.

several individual stations, our model shows strong prediction
ability at most stations, and approximately 69% and 77%
of the stations have high CV-R2 (>0.8) and small RMSE

(<18 µg/m3) values. These results illustrate that the STET
model performs well in estimating and predicting PM2.5 con-
centrations at different locations in China, especially in areas
without ground monitoring stations.

D. Discussion
1) Sensitivity Analysis and Model Comparison: First of

all, we analyzed the sensitivity of the selected predictors to
PM2.5 estimates using the STET model by adding varying
noises (covering from space to time) from 1% to 20% to
each variable in the training data from 2018 in China (Fig. 7).
In general, the absolute mean relative errors of PM2.5 estimates
become larger with increasing uncertainties in each input
variable; however, the sensitivity of different variables to
PM2.5 estimates varies greatly and show no-linear relation-
ships. AOD is the most sensitive predictor to PM2.5 estimates,
and a 1% retrieval errors can lead to about 0.13% errors in
PM2.5 estimates. Followed by NDVI and all meteorological
factors that have decreasing slopes ranging from 0.03 to 0.07.
By contrast, our model is less sensitive to DEM and four
pollutant emissions with much smaller slopes <0.02. These
results illustrate that our model is robust and noise resis-
tant, benefiting from the advantages of tree-based ensemble
learning [48]–[50]. In addition, our results also confirmed the
complexity and uncertainty of various factors affecting PM2.5,
among which AOD, underlying surfaces, and meteorological
conditions are particularly useful for PM2.5 inversion and need
to be determined accurately.

Furthermore, we compare the model performance with
different input variables in PM2.5 estimates in China using the
data in 2018. First, when the predictors with lower important
scores are retained, the accuracy and prediction ability of
the model are overall decreased. The sources for the biases
mainly are that most of these variables are at lower temporal
resolutions (e.g., annual), or their values change little in a
year, which provides less valuable information but introduces
additional noises. These results illustrate that it is necessary
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TABLE II

MODEL PERFORMANCE STATISTICS FROM THIS STUDY AND PREVIOUS STUDIES FOCUSED ON CHINA

Fig. 7. Variation of the mean relative error (%) in PM2.5 estimates with
increasing noises for each input predictor using the STET model in China.

to perform the appropriate feature screening because this
procedure can improve not only the overall accuracy but also
the operation efficiency.

Then, we compared the model performance by remaining
the emissions or AOD due to their same positive correlations
with surface PM2.5 concentrations. Results show that the
model performance without AOD decreased obviously with
much lower CV-R2 values and larger RMSEs. By contrast,
the model performance without pollutant emissions decreases
slightly with relatively small differences in CV-R2 and RMSE
values <0.02 and <1, respectively. The main reason is that
AOD has much higher spatial (i.e., 0.06◦ × 0.06◦) and
temporal (e.g., daily) resolutions than the emissions (i.e.,
0.25◦×0.25◦, monthly), which can provide more detailed spa-
tiotemporal information. In addition, the correlations between
PM2.5 observations and AOD are significantly higher (i.e., R =
0.49, p < 0.01) than that between PM2.5 and emissions (i.e.,
R < 0.12, p < 0.05), further explaining this.

2) Comparison With Related PM2.5 Studies: In this section,
we first compare our results with previous related PM2.5

studies using the same VIIRS AOD products (Table II). Results
show that our STET model is superior to the time-fixed

effects regression model [25] and the spatiotemporal statistical
model combining the time-fixed effects regression and GWR
models [27] in the BTH region. It performs much better than
the 3-D variational data assimilation model in the BTH and
YRD regions [26]. Furthermore, it outperforms the spatially
structured adaptive two-stage model at the national scale [28].
The main reason is that our algorithm yields a much stronger
data mining ability than traditional methods. In addition,
we also performed a model comparison with VAOOO AOD
products using the same approach with the data in 2018.
The model performance has slightly decreased with decreas-
ing CV-R2 values and increasing RMSE values. Therefore,
systematic bias may not have a significant impact on ML
approaches. Nevertheless, the data quality of AOD product
may be another potential reason because VIIRS DT AOD
product is less accurate with a narrower spatial coverage than
VIIRS DB AOD product in China. Therefore, the resulting
aerosol estimation uncertainties and the reduction of data
samples may influence the results to a certain extent.

Then, we also compare our results with previous related
studies focusing on China that are based on different satellites.
Our PM2.5 estimates are more accurate at a higher spatial reso-
lution (6 km) than those retrieved from either MODIS or MISR
AOD products at coarser spatial resolutions of 10–17.6 km
using the two-stage model [56], the GWR model [57],
the timely structure adaptive modeling (TSAM) [21], and the
Gaussian model [45] across China, respectively. In addition,
although lower spatial resolution, our data yield higher accu-
racy and wider spatial coverage than those derived from the
defined ML model [22], the generalized regression neural net-
work (GRNN) model [59], the GWR model [60], the GTWR
model [23], and the extreme gradient boosting (XGBoost)
model [61], respectively, based on MODIS 3-km DT AOD
products, which have a large number of missing values [62],
[63]. Last, our model outperforms the STRF model [10] and
shows a comparable accuracy with an equal CV-R2 to the
STET model [34] developed for MODIS MAIAC 1-km AOD
products in our previous studies. These results illustrate that
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Fig. 8. Validation of monthly mean PM2.5 estimates from all monitoring
stations for each year from 2013 to 2018 across China (a) 2013, (b) 2014, (c)
2015, (d) 2016, (e) 2017, and (f) 2018.

Fig. 9. VIIRS-DB-derived annual mean PM2.5 maps (6 km) for each year
from 2013 to 2018 in China (a) 2013, (b) 2014, (c) 2015, (d) 2016, (e) 2017,
and (f) 2018.

our model is superior to most models developed in previous
studies for different satellites; in addition, it has a strong
universality and works well on different satellites. Moreover,
we will extend our model to the forthcoming VIIRS MAIAC
750-m AOD product to further improve the spatial resolution
of the PM2.5 data set in China in a future study.

V. SPATIOTEMPORAL VARIATIONS ACROSS CHINA

A. Spatial Coverage and Distribution

The daily PM2.5 maps are generated using the STET model
in China, then the monthly, seasonal, and annual maps are
synthesized using our previous approach [34]. First, monthly
mean PM2.5 concentrations are calculated and validated against
surface observations at each monitoring station for each year
(Fig. 8). The monthly PM2.5 matchups are highly consistent
(i.e., R2 = 0.91–0.94, slope = 0.83–0.89), showing small
estimation uncertainties (i.e., RMSE = 5.8–11.6 µg/m3 and
MAE = 4.1–7.9 µg/m3) among different years during the
study period in China. These results suggest that our PM2.5

data set can more accurately describe the spatiotemporal
variations in PM2.5 pollution across China.

Fig. 9 illustrates annual PM2.5 maps (6 km) covering
mainland China derived from the VIIRS DB aerosol product
using the STET model from 2013 to 2018. Except for Qinghai
province spread across the Tibetan Plateau where the DB

Fig. 10. VIIRS-DB-derived seasonal mean PM2.5 maps (6 km) during
2013–2018 in China (a) Spring, (b) Summer, (c) Autumn, and (d) Winter.

algorithm does not work, our model can generate complete
and spatially continuous annual PM2.5 maps, with the spatial
coverage ranging from 95% to 98% (average = 96%) in China.
In addition, PM2.5 pollution varies from year to year in China
with an annual mean value of 67.0 ± 17.6, 58.4 ± 13.4, 45.2 ±
16.4, 44.2 ± 17.7, 41.7 ± 16.8, and 38.2 ± 17.2 µg/m3 in
each consecutive year from 2013 to 2018, respectively.

In terms of spatial patterns, the Tarim Basin, the Sichuan
Basin, and the North China Plain show high PM2.5 pollution
levels in all years. The Tarim Basin, especially the Taklamakan
Desert located in the basin, always experiences sand and
dust episodes, resulting in high PM2.5 concentrations. Note
that there are few ground monitoring stations in this region,
so the actual situation may differ from model results. Poor
meteorological conditions and the special topography affect
the diffusion of pollutants in the Sichuan Basin. In the North
China Plain, intensive human activities have led to substantial
pollutant discharges. By contrast, PM2.5 pollution levels are
much lower in the southwestern, northeastern, and southern
parts of China due to sparse human activities and temperate
climatic conditions. In general, more than 99%, 98%, 71%,
68%, 64%, and 50% of the country experienced annual mean
PM2.5 concentrations exceeding the international or national
acceptable air quality level (i.e., PM2.5 = 35 µg/m3) from
2013 to 2018, respectively.

Fig. 10 illustrates seasonal mean PM2.5 concentrations
(6-km resolution) from 2013 to 2018 in China. There is less
spatial coverage in summer and winter than in spring and
autumn when missing values are always observed in southern
China and high-latitude areas in northern China. These areas
have frequent cloudy days and surfaces covered by snow/ice,
respectively, so aerosol retrieval cannot be made. There are
also noticeable seasonal differences in the spatial pattern with
average PM2.5 values of 51.0 ± 19.5, 38.8 ± 14.2, 47.0 ± 20.9,
and 67.2 ± 21.3 µg/m3 in spring, summer, autumn, and winter,
respectively. Winter has the most severe PM2.5 pollution, with
more than 97% of the areas failing in meeting air quality
standard, especially in the BTH (∼85.8 ± 26.9 µg/m3) and
YRD (∼80.7 ± 12.5 µg/m3) regions. This is because coal and
fossil-fuel burning for heating dominate in northern China,
leading to a large number of pollutants emitted. By contrast,
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Fig. 11. Spatial distribution of trends (µg/m3/yr−1) calculated from satellite-
derived deseasonalized PM2.5 monthly anomalies from 2013 to 2018 in China.
The inserted figures show time series of satellite-derived (blue color) and
measured (red color) monthly PM2.5 anomalies in three typical regions.

summer has the lowest PM2.5 pollution level, with ∼47%
of mainland China below the acceptable air quality level,
mainly because of the weather conditions, such as frequent
precipitation. In general, spring and autumn show similar
spatial patterns in PM2.5 distributions. Note that the PM2.5

concentrations are particularly high (>100 µg/m3) over the
Taklimakan Desert in spring and winter, mainly caused by
frequent dust events and the transport of sand.

B. Temporal Variation and Trend

Fig. 11 shows the temporal PM2.5 trends from 2013 to
2018 across mainland China. The results illustrate that PM2.5

pollution had changed significantly in China, with an average
decreasing trend of −5.6 µg/m3/yr−1 (p < 0.001) from
2013 to 2018. In general, most of the remaining areas show
significant decreasing trends in PM2.5 concentrations (p <
0.05), especially in eastern and central China with large
negative trends >8 µg/m3 per year. By contrast, PM2.5 con-
centrations had increasing trends >2 µg/m3/yr−1 in the Tarim
Basin, especially for some southwestern parts of the basin
(p < 0.05). In addition, our satellite-derived results show that
PM2.5 pollution has significantly declined (p < 0.001) with
average decreasing trends of 6.6, 6.3, and 4.5 µg/m3/yr−1 in
the BTH, YRD, and PRD regions, respectively. Meanwhile,
we compared our results with PM2.5 trends calculated from
ground measurements based on surface stations in three key
regions, and the same significant downward trends (p <
0.001) were seen from 2013 to 2018 in each region (i.e., 7.0,
6.6, and 4.8 µg/m3/yr−1), showing small differences within
±0.5 µg/m3/yr−1. The differences in magnitude are caused
by the different spatial coverage of satellite- and ground-
based observations. Nevertheless, these results illustrate that
our satellite-derived PM2.5 temporal trends are robust.

In 2012, the Chinese government implemented a 5-year
Action Plan on Air Pollution Prevention and Control
(2013–2017) with the main goal of substantially reducing
PM2.5 pollution in China, especially in key regions [51]. The
satellite retrievals provide an objective and independent assess-
ment of the effect of the measures taken. Since then, PM2.5

concentrations have decreased by 37.7%, 36.2%, 38.0%, and
26.9% over the whole of China and the BTH, PRD, and YRD

TABLE III

STATISTICS OF OVERALL GOALS AND COMPLETION STATUS FOR THE
PM2.5 POLLUTION CHANGE DURING THE AIR POLLUTION

CONTROL PLAN

Fig. 12. Histograms of annual and seasonal mean PM2.5 concentrations and
variations from 2013 to 2018 in China and three typical regions (a) China,
(b) BTH, (c) YRD, and (d) PRD.

regions during the Action Plan, respectively (Table III). PM2.5

concentrations have also decreased from 72.8 ± 14.4 µg/m3

in 2013 to 48.3 ± 6.8 µg/m3 in 2017 in Beijing City. These
results suggest that the set main pollution reduction goals
by the government have been well achieved. Furthermore,
the quantitative evaluation results obtained in this study are
highly consistent with the official assessment results, showing
small differences within 1%–4%. This shows that our VIIRS-
DB-derived PM2.5 data set captures well both the overall
magnitude but also the spatiotemporal variations of PM2.5 from
which it may conclude that the emission control measures
implemented in China have been effective in significantly
improving the air quality [64], [65].

Fig. 12 shows the histograms of annual and seasonal mean
PM2.5 concentrations and variations across China and three
typical regions. PM2.5 pollution was the most severe in 2013,
when mean PM2.5 concentrations far exceeded the acceptable
air quality standard, especially in the BTH and YRD regions in
winter with 2–3 times larger PM2.5 loadings. However, by the
end of 2018, PM2.5 concentrations had gradually decreased by
∼40%–45% for the whole year, and by 29%–56%, 23%–53%,
35%–51%, and 32%–49% for the four seasons in China and
in three key regions. Note that the PRD region has reached
a lower PM2.5 pollution level in recent years. Overall, only
the air quality in summer meets the acceptable level across
China and regionally. PM2.5 was rather high in other seasons,
especially in winter. More effective measures should thus be
taken in the future to control air pollution in China.
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VI. CONCLUSION

In this study, instead of using the widely used MODIS
AOD products at coarse spatial resolutions, we aimed to
estimate and extend continuous observations of near-surface
PM2.5 concentrations from the newly released VIIRS Version
1 DB product at a spatial resolution of 6 km. For this purpose,
the highly accurate STET model is selected following a
rigorous comparison of various statistical and ML approaches
to produce a spatially continuous PM2.5 data set from 2013 to
2018 covering China, named ChinaHighPM2.5.

Our model works best in deriving daily PM2.5 concentra-
tions, with a high out-of-sample (out-of-station) CV-R2 of 0.88
(0.87) at the national scale during 2013–2018, especially
in three typical urban agglomerations. The model captures
well PM2.5 concentrations in areas with no monitoring sta-
tions. Moreover, following the implementation of the five-
year (2013–2017) Action Plan on Air Pollution Prevention
and Control, PM2.5 pollution levels have systematically and
significantly declined in most parts of China from 2013 to
2018 at a mean nation-wide rate of −5.6 µg/m3/yr−1 (p <
0.001). The satellite-based estimate of the trend from the
ChinaHighPM2.5 is in good agreement with that from ground-
based data reported by the government. The former is of high
and uniform resolution and extensive spatial coverage than the
latter and is thus of special value for monitoring air pollution
and environmental health studies in China.

Results from this study illustrate the unique advantages of
the STET model and bring new insights into satellite-based
PM2.5 estimations in China. We have made some improve-
ments to the STET model compared to our previous study, e.g.,
involve and remove variables via physical mechanisms and
collinearity diagnosis, and further optimized method for deter-
mining temporal and spatial information. Second, we have
further analyzed the influence and sensitivity of input variables
on the model performance and made detailed comparisons
with traditional models and previous related PM2.5 studies
from different satellites. The results illustrate that our model
is robust and has strong universality and application poten-
tial, which can be applied to different satellites. Our study
provides the public with more accurate and detailed long-
term spatiotemporal variations in PM2.5 pollution across China
from 2013 to 2018, including the Action Plan (2013–2017)
implemented by the government, from the perspective of
satellite remote sensing. This study looms the potential of
extending PM2.5 data records in China by merging the products
derived from the EOS sensors (e.g., MODIS and MISR) with
the VIIRS, which can be traced back to the two decades, and
also extended to the next few decades after MODIS or MISR
satellites retire in the future. Therefore, we will consider
merging those different satellite observations to generate an
integrated longer-term seamless PM2.5 product in our future
study [66].

Although our PM2.5 estimates have good accuracy, there
are still rooms for further improvement. First of all, due to
complex and unclear sources of PM2.5, more comprehensively
potential natural or human variables with high spatiotemporal
resolutions are strongly suggested to be involved via further
literature or sensitivity tests. Then, more appropriate methods

should be investigated to remove less important predictors to
reduce additional noise inputs and minimize the overfitting
issue caused by a large number of input variables, espe-
cially for traditional statistical regression and other artificial
intelligence methods. This process can improve both model
accuracy and operation efficiency. In addition, spatiotemporal
information is essential and cannot be ignored in the model
development; thus, more accurate determination approaches
need to be explored to further improve the accuracy of PM2.5

estimates.
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