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Abstract: Water uptake by aerosol particles alters its light-scattering characteristics significantly.
However, the hygroscopicities of different aerosol particles are not the same due to their different
chemical and physical properties. Such differences are explored by making use of extensive
measurements concerning aerosol optical and microphysical properties made during a field experiment
from December 2018 to March 2019 in Beijing. The aerosol hygroscopic growth was captured by the
aerosol optical characteristics obtained from micropulse lidar, aerosol chemical composition, and
aerosol particle size distribution information from ground monitoring, together with conventional
meteorological measurements. Aerosol hygroscopicity behaves rather distinctly for mineral dust
coarse-mode aerosol (Case I) and non-dust fine-mode aerosol (Case II) in terms of the hygroscopic
enhancement factor, fβ(RH,λ532), calculated for the same humidity range. The two types of aerosols
were identified by applying the polarization lidar photometer networking method (POLIPHON).
The hygroscopicity for non-dust aerosol was much higher than that for dust conditions with the
fβ(RH,λ532) being around 1.4 and 3.1, respectively, at the relative humidity of 86% for the two
cases identified in this study. To study the effect of dust particles on the hygroscopicity of the
overall atmospheric aerosol, the two types of aerosols were identified and separated by applying the
polarization lidar photometer networking method in Case I. The hygroscopic enhancement factor of
separated non-dust fine-mode particles in Case I had been significantly strengthened, getting closer to
that of the total aerosol in Case II. These results were verified by the hygroscopicity parameter, κ (Case
I non-dust particles: 0.357 ± 0.024; Case II total: 0.344 ± 0.026), based on the chemical components
obtained by an aerosol chemical speciation instrument, both of which showed strong hygroscopicity.
It was found that non-dust fine-mode aerosol contributes more during hygroscopic growth and that
non-hygroscopic mineral dust aerosol may reduce the total hygroscopicity per unit volume in Beijing.

Keywords: aerosol hygroscopicity; lidar observation; dust; non-dust; POLIPHON; chemical
composition
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1. Introduction

The presence of aerosols has an important impact on the Earth’s climate and environmental
changes. It not only indirectly changes the optical and microphysical properties of clouds, but also
affects global climate change by changing the radiation balance of the Earth by absorbing and scattering
the total incident radiation [1]. However, aerosol loading and properties have high temporal and spatial
variations, thus their interactions with the Earth’s climate remain highly uncertain [2,3]. Understanding
the mechanism of changes in aerosol characteristics in the atmosphere is of great significance for
studying their effects on the Earth’s climate and its changes. A key factor influencing aerosol properties
is water vapor, which may be uptaken by aerosol particles [4,5] to alter their optical and microphysical
properties, especially scattering and absorption [6].

The sensitivity of aerosol particles to water vapor is usually measured by the hygroscopic
enhancement factor that is a function of the aerosol light scattering coefficient with respect to changes in
relative humidity (RH) and wavelength (λ) [fβ(RH, λ)]. Kuang (2016) first observed the deliquescence
of aerosols in the North China Plain using the humidified nephelometers [7]. Aerosol hygroscopicity
is also described by hygroscopic growth factor (GF), which is defined as the ratio of the wet particle
diameter at a high RH to that of the dry particle [8] ( Meier et al., 2009). Wang (2017) used hygroscopic
and volatile tandem differential mobility analyzer (H/V-TDMA) to study the moisture absorption
and volatility characteristics of submeter aerosols under controlled conditions [9]. In addition, the
hygroscopicity parameter (κ) is used to describe water uptake ability of different types of aerosols; the
κ of mixed aerosol can be obtained from the volume fractions of different chemical components in the
aerosol following the method of the Zdanovskii–Stokes–Robinson (ZSR) mixing rule [10–12]. Some
researchers also use fβ(RH, λ) and GF to derive κ [13,14].

Most of these studies focused on the hygroscopicity of fine-mode spherical aerosol particles.
Coarse-mode aerosols of irregular shapes such as dust and sea salt aerosols are also subject to
hygroscopic growth in a more complex manner [15,16]. A water-absorbing process has been observed
to occur on the surface layer of mineral dust particles, changing their apparent morphological
properties, thus impacting dust–cloud interactions [17]. Laboratory studies help gain a deep insight
into heterogeneous chemistry processes taking place on dust particles as a result of water-induced
swelling and the ensuing changes in their optical properties [18]. While there have existed many
studies on aerosol hygroscopicity using in situ and laboratory observation data, there have been
relatively few studies in open atmospheric environment conditions in China whose aerosols are heavy
and complex with significant impact on regional climate and environment [3,19]. With the increasing
amount of lidar measurements, attempts have been made to derive the hygroscopicity of atmospheric
aerosols under certain atmospheric conditions [20–24].

In this study, we attempt to investigate differences in the hygroscopic growth between two
common types of aerosols observed in Beijing, dust aerosol and non-dust aerosol, using lidar data
acquired during a field experiment from December 2018 to March 2019 by choosing two somewhat
representative cases. One case corresponds to background fine-mode aerosol, and the other, aerosol
mixed with dust particles. Section 2 describes the instruments and methodology. Section 3 shows and
discusses the results of the study. The last section is a summary of the whole study.

2. Instruments and Methodology

2.1. Experiment Site

The observation site (Nan Jiao, NJ) is situated near the fifth-ring beltway in southern Beijing
(39.81◦N, 116.5◦ E), which is a basic climate observation site of the China Meteorological Administration
(Figure 1). It hosts the most comprehensive meteorological observation instruments. The high
population density and rapid economic development of the Beijing megacity have led to serious
emissions of pollution in the area. A series of observational experiments was carried out here starting
in August 2017 with the deployment of a large suite of instruments measuring virtually all aspects
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of aerosol properties (physical, chemical, optical, and hygroscopic) as summarized in Li (2019) [25].
From December 2018 to March 2019, haze and dust aerosols were dominant at the site. Enhanced
observations were thus conducted then to study the mixed state and morphological changes of different
chemical components leading to different characteristics of atmospheric pollutant aerosol.
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Figure 1. The color map on the left in the picture is the elevation map of the Beijing–Tianjin–Hebei
region in China. The triangular red mark is the position of the observation station, and the image on
the right is the true color image of the observation station.

2.2. Instruments

2.2.1. Lidar Systems

This study used two kinds of lidar systems. One system was the micropulse lidar system. It can
acquire aerosol vertical optical profiles. It works through a low-energy (6–8 µJ) Nd: YVO4 laser with
high frequency (2500 Hz) at 532 nm [26]. It can provide continuous profile data with 30 s temporal
resolution and 30 m vertical resolution. This system can make polarization measurements at the
532 nm channel. Based on the parallel and vertical corrected signals collected by the Micro Pulse
Lidar (MPL), the linear volume depolarization ratio was obtained characterizing the shape of aerosol
particles per unit volume. The other system used simultaneously was the Raman lidar system that has
three channels of 355 nm, 532 nm, and 1064 nm. It works through a high-energy (~1.2 J) Nd: YAG laser
with a 20 Hz frequency. The 7.5 vertical resolution and 15 min temporal resolution profile data can be
obtained by our Raman system. Each observation used in this study was the mean of 5000 laser pulses
emitted at a frequency of 20 Hz during the interval of 5 min [22]. The Raman lidar system receives
532 nm and 1064 nm atmospheric Mie-scattering signals and vibration–rotation Raman-scattering
(355 nm, 386 nm, and 407 nm) signals. These signals are processed to infer water vapor, clouds, and
aerosols. This study used extinction (σ), backscattering coefficient (β), volume depolarization ratio
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profiles at 532 nm from this MPL and water vapor profiles (retrieved at 386 nm and 407 nm vibrating
Raman channels) from the Raman lidar. The temporal and spatial resolutions of the data from both
lidar systems were unified to 15 min and 30 m, respectively, to ensure data consistency.

2.2.2. Aerosol Chemical Speciation Monitor

The aerosol chemical speciation monitor (ACSM) equipped with a fine particulate matter (PM2.5)
inlet impactor was used to detect the chemical characteristics of the aerosols and obtain the mass
concentrations of chemical components including sulfate, nitrate, ammonium, chloride, and organics
in real time [27,28]. It collects samples at 15 min intervals. First, submicron aerosol particles enter into
the aerodynamic particle-focusing lens. After that, the aerosol comes into the particle composition
analysis chamber and the particle beam impacts a flash vaporizor with a temperature of about 600 ◦C
and is then ionized through a 70 eV electron impact [29]. Ng (2011) and Sun (2018) provide more
details about the operation of the ACSM and its applications [29,30].

2.2.3. Particle Sizers

A nano-scanning mobility particle sizer (Nano-SMPS, model 3756, TSI Inc., Shoreview, MN,
USA), a scanning mobility particle sizer (SMPS, model 3938, TSI Inc.), and an aerodynamic particle
sizer (APS, model 3321, TSI Inc.) monitored the particle size distributions of the aerosols. These
instruments measure particle size distributions and number distributions in real time and in size ranges
of 0.00198–0.0649 nm (Nano-SMPS), 0.01–600 nm (SMPS), and 500–20,000 nm (APS). The Nano-SMPS
and SMPS use electrostatic classifiers to charge particles, classify particles, and count particles using a
condensation particle counter [31]. The APS measures particle velocities, which are then related to
particle size through a laser scan technique to calculate particle diameters [31]. Through the relationship
between the aerodynamic particle size and Stokes’ particle size [32], data from these three instruments
were combined to get a full spectrum distribution of particles from ultrafine to coarse throughout the
day. Therefore, the particle spectrum distribution of aerosols at any time of day can be obtained.

2.2.4. Radiosondes and PM Measurement Instruments

L-band GTS1 digital radiosondes are launched twice a day at the NJ site (at ~1115 and ~2315
UTC), collecting data with a 1 s temporal resolution [33]. The GTS1 detector, which takes ~40 min
to reach 10 km, provides atmospheric RH profiles with resolution of 1.0%, temperature profiles with
resolution of 0.1 ◦C, and pressure profiles with resolution of 0.1 hPa.

The data used in this study were the calibrated and quality-controlled PM2.5 and PM10 data
acquired from the China National Environmental Monitoring Center (CNEMC) [34,35] of the 1480 PM
concentration measurement stations across China, from a station about 2 km from NJ. More details of
the instruments we use are listed in Table 1.

Table 1. List of instruments and parameters.

Instruments Parameters Type Time
Resolution

Vertical Spatial
Resolution

MPL

Extinction coefficient profile,
backscatter coefficient

profile, volume
depolarization ratio profile

SigmaSpace
micropulse lidar

system 4202
30 s 30 m

Raman Lidar Water vapor mixing ratio
profile

Vibrational–Rotation
polarization
Raman lidar

15 min 7.5 m

ACSM Aerosol chemical
composition Aerodyne Q-ACSM 15 min
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Table 1. Cont.

Instruments Parameters Type Time
Resolution

Vertical Spatial
Resolution

SMPS Particle number size
distribution (0.01~0.05 µm) TSI 3938 5 min

APS Particle number size
distribution (0.5~20 µm) TSI 3321 5 min

Nano-SMPS Particle number size
distribution (5 nm~0.05 µm) TSI 3756 5 min

Radiosondes
Temperature profile, relative

humidity profile, water
vapor mixing ratio profile

L-band GTS1,
GRAW

Twice a day
(11:00 and
23:00 UTC)

one data per
second during

ascent

2.3. Methodology

2.3.1. Retrieval of Aerosol Optical Depth, Water Vapor, and RH Profiles

When the laser beam emitted by a lidar passes vertically through the atmosphere, the energy P(z)
of the echo signal at height z is determined through the lidar equation:

P(z) = P0Cz−2[βaer(z) + βmol(z)]T2
aer(z)T

2
mol(z), (1)

where P0 is the total energy of the laser, C is the lidar system constant, β1(z) and β2(z) are, respectively,

the aerosol particles and air molecules backscattering coefficients. T1(z) = exp [−
∫ Z

0 α1(z)dz] is the

transmittance of the aerosol, T2(z) = exp [−
∫ Z

0 α2(z)dz] is the transmittance of air molecules, and α1(z)
and α2(z) are, respectively, the σ of aerosol particles and air molecules at height z [36]. The Fernald
inversion algorithm [36] retrieved the aerosol σ and β profiles in this study, which provided an analytic
solution to Equation (1) for Mie scattering. Li (2015) provided more details about this algorithm [37].

The water vapor mixing ratio (W) is inverted using the ratio of Raman lidar echo signals of water
vapor molecules (Pwv) to nitrogen molecules (PN) [38]:

W(Z) = Cwv∆w
q (z0, z)

Pwv(z)
PN(z)

(2)

∆w
q (z0, z) =

exp {−
∫ z

z0
[αaer
λN

(z) + αmol
λN

(z)]dz}

exp {−
∫ z

z0
[αaer
λwv

(z) + αmol
λwv

(z)]dz}
(3)

where Cwv is the calibration constant of the Raman lidar, calculated using radiosonde data collected at
the same time as the lidar measurements. Two criteria need to be met to ensure the accuracy of the
calibration constant calculation within a specified height range: there is no significant change in W, and
RH is greater than 30% [39]. The term ∆w

q is the correction function for atmospheric transmittance. The
parameters αaer

λN
(z) and αaer

λwv
(z) are the aerosol extinction coefficients of nitrogen channel and water

vapor channel, respectively.
The RH profiles directly measured by radiosondes are converted to W profiles as follows:

RH =
p·W

(3798.554 + 6.107W) × 10
7.5t

237.3+t
(4)

where p and t are atmospheric pressure (hPa) and temperature (◦C), respectively.
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2.3.2. The selection of Hygroscopic Growth Cases

The first step in selecting a hygroscopic growth case is to ensure that the increase in moisture
in the aerosol is accompanied by increases in aerosol optical parameters (e.g., β) and microphysical
parameters (e.g., aerosol particle size). Therefore, when studying hygroscopic growth, the aerosol β
and RH must increase together in the same aerosol layer. The aerosol layer must also be uniformly
mixed, otherwise the change in aerosol β may not be solely caused by a change in RH. In general,
the radiosonde-determined potential temperature (θ) and W of the aerosol layer in question determine
the atmospheric mixing conditions of that aerosol layer. The atmosphere is considered uniformly
mixed in this study when the variation of θ is less than 2 ◦C and the variation of W is less than
2 g/kg [22,40–42].

The hygroscopic property of the aerosol is described by fβ(RH,λ), defined as follows:

fβ(RH,λ) =
β(RH,λ)
β(RHre f ,λ)

(5)

where β(RH,λ) and β(RHref,λ) are the backscattering coefficients of each RH measurement and the
reference RH, respectively. The range of RH selected in this study is 65–90%. Equation (5) is usually
parameterized using the Hänel [43] and Kasten [44] models:

H
..
anel : fβ(RH,λ) =

[
(1−RH)/(1−RHre f )

]−γ
, (6)

Kasten : fβ(RH,λ) = a[1− (RH/100)]−b (7)

where γ, a, and b are empirical parameters with γ and b indicating the hygroscopic strength. Both
models were used in this study and selected was the parameterization with the best fit according to the
least-squares method.

2.3.3. Aerosol Chemical Ion-Pairing Scheme

The hygroscopicity of aerosols is closely related to the various organic and inorganic salts in the
atmosphere. The ACSM can provide the mass concentrations and volume fractions of organic and
inorganic salts of non-refractory fine PM in the atmosphere [10]. To study the hygroscopic properties
of aerosol particles with different chemical compositions and calculate the neutral salts from all ion
molar numbers, the ion-pairing scheme was used in this study [45]. Because of its low concentration,
the chlorine ion was not considered. The method is described as follows:

nNH4NO3 = nNO−3
,

nNH4HSO4 = min(2nSO2−
4
− nNH+

4
+ nNO−3

, nNH+
4
− nNO−3

),

n(NH4)2SO4
= max(nNH+

4
− nNO−3

− nSO2−
4

, 0),

nH2SO4 = max(0, nSO2−
4
− nNH+

4
+ nNO−3

),

nHNO3 = 0,

(8)

where n refers to the mole number, the “max” and the “min” in the equations indicate maximum and
minimum values, respectively. For multicomponent particles, κ is defined by the ZSR mixing rule [8]:

κ =
∑

i
εiκi, (9)

where εi is the volume fraction of the ith component, and κi is the hygroscopicity parameter for the ith
component [46]. The effects of organic compounds are complex, but according to previous studies, its
density and κi are assumed to be 1.4 g·cm−3 and 0.1, respectively [47]. The volume fraction of each
component can be calculated using the parameters listed in Table 2.
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Table 2. The density (in g cm−3) and κ of the selected compounds.

Species NH4NO3 NH4HSO4 (NH4)2SO4 H2SO4 Organics

Density 1.725 1.78 1.76 1.83 1.4

κ 0.68 0.56 0.52 0.91 0.1

2.3.4. POLIPHON Method

The polarization lidar photometer networking (POLIPHON) method can be used to separate the
optical properties of dust from atmospheric aerosols via the depolarization ratio [48]. This method
has been used successfully to separate dust aerosol from other types of aerosols such as separating
dust from smoke aerosol produced by biomass burning [49,50] and separating aerosol particles from
volcanic ash [51]. It was used here just to differentiate dust and non-dust optical property profiles. The
process to separate dust and non-dust backscatter scattering profiles starts with the volume (δV) and
particle (δ) linear depolarization ratios [18]:

δV =
Pcr

Pcr + Pco
, (10)

δ =
R× δV

× (δmol + 1) − δmol × (δ
V + 1)

R× (δmol + 1) − (δV + 1)
, (11)

where Pcr and Pco represent signals measured from the parallel and vertical channels, respectively. The

parameter R is the backscattering ratio (R =
βm+βp
βm

), δmol is the atmospheric molecules depolarization
ratio. The depolarization ratios of dust and non-dust are assumed to be relatively stable with height
changes; the β profiles with dust contributions and with non-dust contributions, βd and βnd, respectively,
can be calculated [46]:

βd = β
(δ− δnd)(1 + δd)

(δd − δnd)(1 + δ)
, (12)

βnd = β− βd, (13)

The dust and non-dust depolarization ratios are δd and δnd, respectively, and are assigned values of
0.16 and 0.05, respectively [49]. In this way, coarse-mode dust (non-spherical particles) and fine-mode
non-dust particles can be separated and their properties studied separately.

3. Results and Discussion

3.1. Selection of Dust and Non-Dust Cases and Their General Properties

Figure 2 shows the time series of the mass concentrations of PM2.5 and PM10, the
Raman-lidar-measured W, and the 532 nm MPL-measured σ and depolarization ratio, measured
in NJ, Beijing, from 4–13 February 2019. The shaded areas denote two processes of hygroscopic growth.
Case I on around 1115 UTC 5 February 2019 corresponds to the hygroscopic growth with dust particles.
Case II on around 1115 UTC 12 February 2019 represents the background aerosol conditions. Using
lidar to study the hygroscopic growth of aerosols in the atmosphere must meet certain conditions
described in Section 2.3.2 that are distinctly different.
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Figure 2. Time series of (a) mass concentrations of PM2.5 (red line) and PM10 (black line), (b) W
measured by the Raman lidar, (c) the 532 nm σ measured by the Micro Pulse Lidar (MPL), (d) the
depolarization ratio measured by the Micro Pulse Lidar (MPL). Data are from 4–13 February 2019. The
shaded gray areas show the two cases examined: Case I (around 1115 UTC 5 February 2019) and Case
II (around 1115 UTC 12 February 2019).

Prior to the time of Case I, there was a transport of dust above 700 m. After the dust transmission
process, a local dust event occurred during Case I, which indicated that the depolarization ratio of ~0.2
(Figure 2d) and the mass concentration difference of PM10 and PM2.5 were large (Figure 2a). The PM10

mass concentration of Case I (~300 µg m−3) was greater than that of Case II (<100 µg m−3). Figure 3
shows the normalized particle number size distribution (PNSD) in the two cases. It shows there were
three obvious particle modes which peaked at the sizes of 0.0018, 0.12, and 1 µm in Case I. In Case II,
the normalized PNSD was generally bimodal, dominated by ultrafine particles. In light of the MPL
depolarization ratio and PM results, Case I and II were identified as dust and non-dust (background
condition) cases, respectively. From Figure 2b, the upper boundaries of the Case I and Case II layers
were located near cloud bases, making the range of RH changes large enough [52]. The locations of
the cloud bases can be determined using the 1064 nm range correction signal of the Raman lidar and
radiosonde-measured RH values [53]. The weather in Beijing is generally dry, especially in spring and
winter. During the entire time series, W in the two hygroscopic growth processes was about 2 g/kg
higher than that of other time periods, favourable for hygroscopic growth to occur.
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Figure 3. Normalized particle size distributions of Case I (5 February 2019, 1115 UTC, in red) and Case
II (12 February 2019, 1115 UTC, in blue) from 0.002 µm to 20 µm obtained by combining aerodynamic
particle sizer (APS), scanning mobility particle sizer (SMPS), and nano-scanning mobility particle sizer
(Nano-SMPS) measurements.

3.2. Case Studies

3.2.1. Lidar-Estimated Hygroscopicity

Figure 4 shows the profiles of W, RH, θ, β532, the depolarization ratio, and the color ratio, which
indicates aerosol particle size in each case. In order to ensure that the two cases had the same range of
relative humidity, two atmospheric layers were selected to study the hygroscopic growth: 410–540 m
for Case I and 580–1000 m for Case II and the relative humidity range of both cases was 65–86%. The
W and θ obtained from radiosondes launched at ~1115 UTC were used to determine the layers of
well mixing. As shown in Figure 4 and Table 2, both are generally constant within each layer of each
case, indicating uniformly atmospheric mixing and vertical homogeneity in both cases. Therefore, the
hygroscopic growth that occurred in both cases, resulting in changes in aerosol optical properties, was
most likely caused by the uptake of water [54,55].

When the aerosol layer is uniformly mixed, the variation of aerosol optical properties with height
can be considered mainly caused by water uptake in the aerosol layer. Both the β (Figure 4a,g) and RH
(Figure 4c,i) increased with altitude within each layer. Table 3 shows the specific numerical changes
for the two case studies. The volume depolarization ratio, however, decreased with altitude in each
layer (Figure 4e,k; Table 3), indicating that the proportion of spherical particles increased with altitude.
The volume color ratio (Figure 4f,l; Table 3), which indicates the size of aerosol particles per unit
volume, increased in both cases within each layer. Given that the β increased with increasing RH
in the two layers, hygroscopic growth likely occurred. All these suggest that the aerosol particles
gradually grew from the bottom to the top of each layer, accompanied by aerosol particles to become
more spherical [18,42,56].
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Table 3. Range of values and gradient values of the W, the θ, the RH, the β532, the depolarization ratio,
the color ratio for Case I and Case II.

Case I Case II

Range Gradient Range Gradient

Altitude (m) 410 540 130 580 1000 420
W (g kg−1) 1.788 2.285 0.497 1.402 1.488 0.086
θ (◦C) −2.309 −1.638 0.671 −5.204 −4.352 0.852

β532 (km−1 sr−1) 0.023 0.034 0.011 0.008 0.026 0.018
Depolarization ratio 0.125 0.071 −0.054 0.077 0.035 −0.042

Color ratio 0.351 0.544 0.193 0.388 1.60 1.212

The aerosol particle hygroscopic enhancement factors of the two cases were calculated using the
Hänel and Kasten parameterizations of Equation (4). The initial RH of both cases was 65%. Table 4
summarizes the fitting results, and Figure 5 shows the fβ(RH,λ) and the fitting results for each case.
The Case II hygroscopic growth factor was much stronger than that of Case I. β in Case I increased 1.4
times [ fβ−caseI(86%)] in the RH range of 65–86%, while β in Case II increased 3.1 times [ fβ−caseII(86%)] in
the same RH range, similar to the increase reported in previous studies for other regions [22,23,41,42,54].
Both of the parameters b from the Kasten model and γ from the Hänel model indicate the strength of
hygroscopicity. These parameters in Case I were less than the parameters for Case II (Case I: b = 0.33,
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γ = 0.307; Case II: b = 1.34, γ = 1.138) [57]. More intuitively, the color ratio in Case II (Figure 4l) was
significantly higher than that in Case I (Figure 4f) within the same range of RH change. Mineral dust
particles themselves do not have the characteristics of hygroscopic growth. The hygroscopic growth of
dust particles is often due to the change in water absorption of other substances covering the surface of
dust particles [58]. Therefore, as stated before, Case I aerosol undergoing hygroscopic growth was
aerosol mixed with dust.

Table 4. The fitting parameters and coefficients of determination (R2) of the fits using the Kasten and
Hänel models.

Case I Case II

a b R2 a b R2

Kasten 0.68 ± 0.083 0.33 ± 0.103 0.93 0.2 ± 0.017 1.34 ± 0.091 0.97

γ R2 γ R2

Hänel 0.307 ± 0.100 0.87 1.138 ± 0.179 0.90
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Figure 5. Hygroscopic growth factors (a) retrieved on 5 February 2019 (Case I) from 1050 to 1150 UTC
between 410 and 540 m (RHref = 65%), and (b) retrieved on 12 February 2019 (Case II) from 1050 to
1150 UTC between 580 and 1000 m (RHref = 65%). The red line is the result of the fit using the Kasten
method based on the data.

3.2.2. Isolating Non-Dust Fine-Mode Aerosol Hygroscopic Properties

To better understand the hygroscopic growth and its dominant influential factors, the one-step
POLIPHON method is used to differentiate contributions from dust and non-dust. Figure 6 shows
the 532 nm β profiles for the mean total, non-dust (mainly fine-mode) and dust (mainly coarse-mode)
components. The area of high depolarization ratio in Figure 2d denotes the dust process that was first
transmitted to the local area at high altitude and then the local dust process. In Case I, the irregular
dust particles with high vertical depolarization ratio mainly concentrated near the ground (below
480 m) and contributed more to the overall β in this area. This suggests that dust was generated
locally [59,60]. Within the same range of RH, the backscattering coefficient of the non-dust particles
increased faster than the total backscattering coefficient.

Figure 7 shows the Case I non-dust particle fβ(RH,λ532). For a given RH, the fβ(RH,λ532) of
non-dust fine-mode particles in Case I is much higher than that when particles of all modes are
considered. The non-dust-particle fβ(RH,λ532) was fitted using the Kasten parameterization. The
Case I non-dust-particle b value is 0.98, which is greater than the Case I total-particle b value (0.33)
and closer to the Case II total-particle b value (1.34). The hygroscopic growth intensity of Case I is
similar to that of Case II, which represents mainly non-dust fine particles. This suggests that fine-mode
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non-dust particles play a dominant role in hygroscopic growth. Di Girolamo (2012) observed a
similar phenomenon in their study on aged dust particles mixed with maritime, urban, and organic
aerosols [61].
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Figure 7. The red (Case I) and black (Case II) dots and lines correspond to Figure 5. The blue dots
represent the non-dust fine-mode hygroscopic growth factors retrieved on 5 February 2019 (Case I)
from 1050 to 1150 UTC within the 410–540 m layer (RHref = 65%).

3.3. The Influence of Chemical Composition Inferred from ACSM Measurements

Removing dust particles from the mean total profile in the dust case increased the hygroscopic
strength of the remaining fine-mode particles, which became closer to that of aerosol in the case of a clean
atmosphere. In other words, fine-mode aerosol particles may be instrumental in hygroscopic growth.
The specific chemical composition of aerosols in each mode is important when determining fβ(RH) [62].



Remote Sens. 2020, 12, 785 13 of 17

Here, the chemical compositions of fine-mode particles in Cases I and II were analyzed. Because the
ACSM’s inlet impactor has a diameter of 2. µm, only fine-mode aerosols were considered. Figure 8
shows the percentages of aerosol chemical compositions obtained from the ACSM measurements
around the times of the two cases. The chemical compositions in the two cases were similar. Organics
dominated in both cases (Case I: 43.2%; Case II: 46.1%). The percentages of sulfate in Cases I and
II were 25.1% and 19.3%, and those of nitrate were 19.1% and 21.2%, respectively. The proportions
of amine (Case I: 11.3%; Case II: 11.8%) and chloride (~1%) were the smallest. Because of its low
percentage and relatively low hygroscopicity, chloride was neglected in this study [10,13,26]. Table 5
summarizes the volume fraction and κ values of each case. The κ values were 0.357 and 0.344 for Cases
I and II, respectively, suggesting that the fine-mode aerosol hygroscopicity in both cases was relatively
strong and approximately the same. This means that the hygroscopicity of aerosols in Beijing depends
on fine-mode aerosol particles and that the presence of mineral dust (non-hygroscopic particles) will
reduce the overall hygroscopicity to some extent [20,62].
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Figure 8. Aerosol mass fractions of fine-mode aerosol measured by the aerosol chemical speciation
monitor (ACSM) for (a) Case I and (b) Case II. Blue, red, yellow, green, and pink represent NO3, SO4,
NH4, organics, and chloride, respectively.

Table 5. Calculated volume fractions (VF) of NH4NO3, NH4HSO4, (NH4)2SO4, H2SO4, and organics,
and the hygroscopicity parameter (κ) for Case I and Case II.

Case I Case II

NH4NO3 NH4HSO4 (NH4)2SO4 H2SO4 Organics NH4NO3 NH4HSO4 (NH4)2SO4 H2SO4 Organics

VF 0.227 ± 0.019 0.210 ± 0.093 0.068 ± 0.090 0 0.493 ± 0.040 0.252 ± 0.047 0.089 ± 0.084 0.136 ± 0.102 0 0.523 ± 0.046
κ 0.357 ± 0.024 0.344 ± 0.026

4. Conclusions

An enhanced observation experiment was conducted in the Beijing climate observatory from
December 2018 to March 2019. During this time, the hygroscopic growth characteristics of two different
atmospheric conditions (dusty, non-dust) were studied using data collected by a ground-based lidar
system and radiosondes, and using aerosol particle spectrum and chemical composition information.
The increase in the aerosol β with increasing RH was used to determine the hygroscopic growth of
the aerosols. W and θ vertical profiles provided additional constraints to the selection of hygroscopic
growth cases. During hygroscopic growth, the volume depolarization ratio decreased and the color
ratio increased, suggesting that aerosol particles grew larger and became more spherical. However, the
hygroscopic enhancement properties of these two different types of aerosols differed. The Kasten and
Hänel parameterization schemes were applied to the two selected cases using a reference RH of 65% in
both cases. It was applied to fit the fβ(RH,λ), parameter b at very low values around 0.33 ± 0.103 for
aerosol with mineral dust (Case I), and reaching up to 1.34 ± 0.091 for aerosol of moderate background
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loading (Case II). The strength of the hygroscopic growth of the fine-mode clean aerosol case (Case II)
was stronger than that of the aerosol mixed with coarse-mode mineral dust (Case I) due to the different
types of aerosols in each case. From lidar-measured β and depolarization ratios and aerosol particle
spectra obtained from particle sizers, the type of aerosol in each case was identified: a mixture of
irregularly shaped dust aerosol and non-dust fine-mode aerosol (Case I) and mainly fine-mode clean
aerosol (Case II). To study the contribution of each aerosol type in Case I to hygroscopic growth, dust
aerosol in Case I was separated from fine-mode aerosol using the POLIPHON method. Within the
same range of RH, the non-dust aerosol β and the fβ(RH,λ532) increased much faster than those for the
dust component and the overall aerosol. The chemical composition of the background aerosol in two
cases obtained by the ACSM was also used to verify the hygroscopic strength of non-dust fine-mode
aerosol particles in Case I and in Case II. The hygroscopic strength kappa coefficient of the non-dust
fine-mode aerosol in Case I and that for the total aerosol of Case II were similar (Case I: 0.357; Case
II: 0.344), representing the general hygroscopic growth of background aerosol in the region. All the
results show that fine-mode aerosol particles play a leading role in the process of moisture absorption
growth, and the presence of non-hygroscopic dust particles can weaken the total hygroscopicity per
unit volume to some extent.
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