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Tong Wu , Zhanqing Li , Xiaoai Jin, Wei Wang, Hao Wu, Rongmin Ren,

Dongmei Zhang, Lu Chen, Yunfei Su, and Maureen Cribb

Abstract— The aerosol liquid water content (ALWC) dictates
the hygroscopicity of aerosol particles. To date, measurements
of ALWC have been confined primarily to ground-based obser-
vations although vertical profiles of ALWC are crucial for
understanding its interactions with meteorology. This study
proposes a novel method for deriving profiles of ALWC using
data acquired by a Light Detection and Ranging (LiDAR),
a microwave radiometer, and a suite of aerosol instruments
measuring aerosol physical and chemical properties, deployed
during a five-month field experiment in Guangzhou, China. The
retrieval approach is based on a machine-learning model named
the gradient-boosted decision tree model. The inversion accuracy
and stability are assessed through comparisons with ALWC data
acquired on the ground and at the top of the Guangzhou tower of
532 m above ground. The agreements are encouraging: with the
coefficient of determination (R2) = 0.870 and root-mean-square
error (RMSE) = 3.28 µg · m−3 for all data; R2 = 0.776 and
RMSE = 2.18 µg · m−3 for tower data; and R2 = 0.872 and
RMSE = 4.1 µg · m−3 for ground data. From the vertical
distribution of the retrieved ALWC in Guangzhou, ALWC is
higher in the lower boundary layer, especially when air pollution
is severe. The proportion of liquid water in aerosol particles is
closely related to the relative humidity in the environment, which
will affect the morphology of aerosol particles (with about every
10% increase in liquid water, the depolarization ratio decreases
by 0.02). The model may be of general use for studying air
pollution and secondary aerosol generation.

Index Terms— Aerosol liquid water content (ALWC), Light
Detection and Ranging (LiDAR), machine learning (ML), vertical
profile.
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I. INTRODUCTION

AEROSOLS directly and indirectly affect the Earth’s
energy budget and water cycle by altering cloud proper-

ties [1]. Both effects are associated with aerosol hygroscopic-
ity, which denotes the amount of water contained in the aerosol
particles, which is referred to as the aerosol liquid water con-
tent (ALWC). Changes in ALWC not only change the physical
characteristics of aerosol particles but also provide a medium
for complex chemical reactions in the atmosphere [2], [3].
Knowledge of the ALWC can help understand and account
for the optical properties of aerosols, as well as the aqueous
phase chemical reaction that is important for studying the
development of secondary aerosols [4]–[6].

The ALWC is mainly determined by the hygroscopic growth
characteristics of aerosol particles and the relative humid-
ity (RH) of the environment [7]. There are two effective ways
to obtain the ALWC. A common method is to obtain the size
distribution of aerosol particles and their hygroscopicity [8].
Stanier et al. [9] obtained the particle distribution of aerosols in
dry and wet states and calculated the ALWC through the vol-
ume difference. Another way to calculate the ALWC is based
on aerosol chemical composition and the phase state of aerosol
particles that are used as inputs to an aerosol thermodynamic
model to simulate the hygroscopicity and ALWC. Examples
of such models are ISORROPIA and the aerosol inorganics
model (AIM) [10], [11]. Research on ALWC in China has
also been carried out in recent years. Liu et al. [12] studied
the differences in the hygroscopicity of aerosol particles at
different scales and with different compositions under a hazy
condition in the North China Plain, laying the foundation for
studying ALWC and secondary aerosol formation in northern
China. Wu et al. [13] found that, in the Beijing area, due to
the hygroscopic effect of aerosols, aerosol liquid water can act
as an effective medium to accelerate the reaction of gaseous
pollutants on the surface of aerosol particles, increasing the
degree of haze. In this study, the ISORROPIA II model
is selected to simulate the ALWC, with aerosol chemical
composition as input [14].

The ALWC increases aerosol’ scattering characteristics,
making aerosol particles more morphologically regular in
shape [15]–[17]. Thus, Kuang et al. [18] proposed a new
method to calculate the ALWC based on the aerosol optical
scattering coefficient obtained by dry and wet nephelometer
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systems. As mentioned before, almost all methods for calcu-
lating the ALWC are based on observational near-surface data.
However, the vertical distribution of ALWC has an important
impact on the atmospheric environment and cloud–aerosol
interactions. The concentration of aerosol particles and the RH
of the environment vary significantly with altitude [19], [20].
Examining the variation of ALWC with height helps toward
understanding the evolution of pollution and its causes and
development regimes, especially in megacities [21]. Compared
with more expensive aircraft-based observation experiments,
a ground-based polarized aerosol Light Detection and Ranging
(LiDAR) provides optical information about the vertical dis-
tribution of aerosol continuously over long periods. Studying
the vertical variation of ALWC is, thus, feasible. However,
to date, few such studies have been conducted. Tan et al. [22]
used a polarized LiDAR to establish an empirical model
based on the relationship between the depolarization ratio
(DR), the backscattering coefficient, and ALWC, generating
vertical ALWC profiles during a heavy pollution event in
Beijing. Note that the ALWC empirical model developed in
this study is aimed at heavy air pollution, so its applicability
to other atmospheric conditions needs to be verified. There
has also been a general lack of high-altitude data for such
investigations.

Here, profiles of aerosol optical parameters obtained by a
LiDAR together with aerosol hygroscopic properties are used
to calculate changes in the backscattering coefficient caused by
ALWC. In combination with coincident weather observations,
ALWC profiles can be retrieved continuously over a long
timeframe. The machine-learning (ML) method called the
gradient-boosted decision tree (GBDT) model is used for the
first time to infer the ALWC profile. ML algorithms have been
increasingly used to develop complex relationships that cannot
be handled by conventional regression approaches [23]–[25],
often leading to significant improvements in the accuracy and
efficiency of calculations. Compared with other regression
calculation methods, the biggest advantage of the ML method
used here is that it can handle discrete and continuous data
flexibly [26]. Due to its simple structure, the calculation
is efficient. The retrieved ALWC in the vertical direction
is validated using observation data at two different heights.
Section II introduces the observation stations, observation
instruments, and data. Section III describes the details of the
algorithm for calculating the ALWC profile, and Section IV
presents validation of the estimates of the vertical distribution
of the ALWC. Section V summarizes the study and provides
conclusions.

II. DESCRIPTION OF THE SITES AND DATASETS

A. Observation Sites

Observations were made at two sites in Guangzhou. Fig. 1
shows the locations of the sites and the locations of the
instruments at these sites. One site is the ground observa-
tion site (23◦00�30�� N, 113◦19�03�� E) of the Guangzhou
Meteorological Bureau, next to the Starlight Expressway and
Changlong Zoo. The other site is the Guangzhou Tower obser-
vation site (23◦06�31�� N, 113◦19�09�� E), where instruments are
deployed 532 m above the ground. Both sites are located in

Fig. 1. Map on (Left) shows the locations of the two observation sites in
Guangzhou (red stars) and their surroundings. Red triangles in the right-hand
side pictures show the locations of the instruments on the Guangzhou Tower
(Upper Right) and the Guangzhou Meteorological Bureau site (Lower Right).

a southern part of Guangzhou, about 10 km apart, and have
similar topographies. This study uses observations acquired
from November 1, 2019, to March 30, 2020, at the ground
site and from January 16 to March 30, 2020, at the tower site.

B. Datasets

The micropulse LiDAR system (MPL, Sigma Space Cor-
poration) provided measurements of the backscattering coef-
ficient (βaer) of aerosol particles at different elevations (H) at
the 532-nm wavelength beyond the blind zone of the lower
260 m. The main aerosol optical parameter used here is the
volume DR that can characterize the regularity of the aerosol
surface and aerosol concentration [27]. After preprocessing,
the volume DR can be obtained by the signal ratio of the two
channels [28]. Finally, βaer was calculated using the Fernald
method [29]. The aerosol hygroscopic enhancement factor
( f (RH)) was measured using a dual-nephelometer system
(Ecotech) with a high time resolution. Dry (RH < 40%)
and wet (a given, elevated RH) aerosol optical scattering
characteristics were recorded by the two nephelometers every
minute [30]. After 45 min, a complete observation cycle of
f (RH) (RH∼30%–90%) was obtained.

To train the fit model and verify the accuracy of the model,
ALWC data are needed. As described in Section I, the ALWC
can be estimated by the chemical composition of aerosols
and aerosol thermodynamic models. An aerosol chemical
speciation monitor (ACSM) can obtain the mass concentration
of various chemical inorganic species and organic species
of aerosols in real time [31]. The ACSM with a 2.5-μm
air cutting head was used to collect chemical composition
data of fine-mode aerosols during the Guangzhou observation
period [32]. Half of the data were observations made near
the ground, and the other half were observations made from
the Guangzhou tower. The RH and temperature (T ) profiles
were retrieved by a microwave radiometer (MWR, HATPRO;
Radiometer Physics GmbH, Germany), conveying water vapor
information in the 22–30-GHz band and temperature informa-
tion in the 51–59-GHz band [33].
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TABLE I

LIST OF INSTRUMENTS AND PARAMETERS

Particulate matter that is 2.5 μm or smaller in size
(PM2.5) data is from the China National Environmental
Monitoring Center measured at a site 2 km from the ground
observation site [34]. According to the classification criteria
provided by the Environmental Protection Agency, PM2.5

concentrations are divided into different pollution levels
(PLs): 0–12 μg · m−3 (good level), 12–35.5 μg · m−3

(moderate level), 35.5–55.4 μg·m−3 (sensitive level),
55.4–150.4 μg · m−3 (unhealthy level), 150.5–250.4 μg · m−3

(very unhealthy level), and 250.5–500.4 μg · m−3 (hazardous
level) [35].

Based on the Doppler coherent detection princi-
ple [36], [37], a wind profiler LiDAR operating at 1550-nm
retrieved wind speeds (WSs) and wind directions (WDs).
Table I lists the instruments used in this study. In data
processing, to ensure that there is enough data for modeling,
all data are unified to a 15-min time resolution.

III. METHODOLOGY

A. Potential Features

The main factors affecting ALWC are the hygroscopic prop-
erties of aerosols and the RH of the environment [10], [21].
Moisture changes in aerosols affect their optical and micro-
physical properties [38]. The hygroscopic characteristics of
aerosols can, thus, be defined by optical parameters [39]

fβ(RH, λ) = β(RH, λ)

β(RHdry, λ)
(1)

where β(RH, λ) is the backscattering coefficient at a particular
RH and wavelength λ. Note that β(RHdry, λ) is similar to
β(RH, λ), representing the backscattering coefficient at a dry
reference, generally RH = 40% [40]. When the RH of the
environment is greater than 40%, hygroscopic growth may

start to affect aerosol optical properties [41]. The conditions
required to study the hygroscopicity of aerosols by LiDAR
alone are limited because it entails continuous changes over
time [42], [43]. Many studies have shown that the hygroscopic
properties of aerosols at the same time and the same place
obtained by LiDAR and nephelometer have a high degree of
consistency [44], [45]. Because the conditions required by a
LiDAR to obtain the hygroscopic characteristics of aerosols for
continuous periods of time are rigid, to ensure continuous data,
aerosol hygroscopic enhancement factors at different times
were obtained by using wet and dry nephelometers. The effect
of aerosol hygroscopicity on the backscattering coefficient,
�β, can roughly represent the effect of aerosol hygroscopicity
and environmental RH on the backscattering coefficient (β)

�β =
{

0, RH < 40%

β − βdry, RH ≥ 40%.
(2)

As mentioned earlier, ambient T and humidity directly
affect ALWC. Since RH is a key factor affecting ALWC,
RH and T are two potential features to be considered. ALWC
affects the optical and microphysical properties of aerosol
particles, reflected by the parameters DR and β. They, respec-
tively, represent the sphericity of aerosol particles and the
light-blocking ability of aerosol particles. WS and WD affect
aerosol transport, connected with aerosol sources. PL refers to
the concentration of environmental pollutants, which affects
the hygroscopicity of aerosols, so are also considered. The
height difference (H) between the ground and the tower is
also taken into account. The correlation coefficients between
RH and ALWC and between �β and ALWC are 0.470 and
0.498, respectively. This suggests that other factors should be
considered when estimating ALWC, such as meteorology and
the environmental PL. Nine characteristic variables that may
affect the ALWC (i.e., RH, T, DR, �β, β, PL, WS, WD, and
H) were selected as potential factors influencing ALWC.

B. Model Selection and Feature Importance

Some of the selected potential features may have nonlinear
relationships with ALWC. The GBDT ML model can more
effectively distinguish multiple features and combine them
when dealing with regression problems [46]. When dealing
with regression problems, GBDT has high accuracy and strong
robustness. The GBDT model is an iterative decision tree
algorithm consisting of multiple trees. The conclusions of
all trees are added together to determine the final variable
selection [47]. The purpose is to iteratively find the decision
tree and make the loss of samples as small as possible.
Friedman [48], [49] used the value of the negative gradient of
the loss function in the GBDT model as an approximate value
of the residual of the boosting tree algorithm in the regression
problem to fit a regression tree. The basic flow of this method
is given as follows.

Input: Training data (see Table III), T =
{(x1, y1), (x2, y2), . . . , (xn, yn)}.

Output: Regression boosted tree model, f̂ (x).
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1) Initialize the weak learner, and estimate the constant
value that minimizes the loss function, f0(x)

f0(x) = arg minγ

N∑
i=1

L F (yi , γ ). (3)

2) Calculate the value of the negative gradient of the loss
function in the current model as the residual estimate
formula (4); estimate the regression leaf node area, and
fit the residual approximate value formula (5); and use a
linear search to estimate the value of the leaf node area,
minimize the loss function, and update the regression
tree formula (6)

rim = −
[
∂L F (yi , f (xi))

∂ f (xi)

]
f = fm−1

(4)

r jm = argminγ

∑
xi ∈R j m

L F (yi , fm−1(xi + γ )) (5)

fm(x) = fm−1(x) +
Jm∑
j=1

γ jm I (x ∈ R jm). (6)

3) Output the final model

f̂ (x) = fM (x). (7)

where rim represents the negative gradient of the loss
function of the i th sample in the mth round; r jm is the
residuals where j is the number of leaf nodes of the
regression tree m, R jm is the regression leaf node area, xi

and yi are the samples for i = 1, 2, 3 . . ., and L F (y, γ )
is the least-squares loss function, L F (y, γ ) = (y − γ )2.

In addition to the GBDT algorithm, there are other com-
monly used ML algorithms that can deal with similar regres-
sion problems. The performance of the GBDT algorithm was,
thus, compared with those of several popular ML methods.
One ML algorithm is the backpropagation neural network
(BPNN); the NN is a fully connected NN and uses three
hidden layers and 250, 150, and 50 nodes in each respective
layer after optimizing the parameters [50]. The random forest
(RF) and the support vector machine (SVM) are two other
algorithms chosen for comparison. The RF algorithm is a
novel, ensemble ML technique, which can handle continuous
and discrete variables and runs efficiently when handling
large datasets [51]. The SVM has been employed widely
in different classification and regression problems because
of its effectiveness in working with nonseparable and high-
dimensional datasets [52]. The same nine selected potential
features were used as inputs to the models. Statistical met-
rics, such as the root-mean-square error (RMSE), the mean
absolute error (MAE), the root-mean-square-percentage error
(RMSPE), and the coefficient of determination (R2), were also
used to evaluate the results calculated at the ground and 532-
m tower level. Table II gives details of the validation results
of these methods. Among these methods, the GBDT has the
best performance in terms of RMSE (3.40), R2 (0.86), MAE
(1.95), and RMSRE (0.61). This means that, when dealing
with our regression problem, encountered in this study, GBDT
has stronger robustness, higher accuracy, and smaller errors

TABLE II

COMPARISON OF THE PERFORMANCES OF DIFFERENT METHODS

than other models. Therefore, we choose the GBDT algorithm
to retrieve the ALWC.

To select the most suitable features for predicting ALWC,
the correlation coefficient from linear regression between each
of the nine potential feature variables and ALWC, and the
feature importance of each parameter to aerosol liquid water
were determined [47]. The feature importance score (FIS) J
is the average value of the importance of feature J in a single
tree [48]

Ĵ 2
i = 1

M

M∑
m=1

Ĵ 2
i (Tm) (8)

where M is the number of trees. The importance of feature J
in a single tree is

Ĵ 2
i (T ) =

L−1∑
t=1

î 2
t 1(vt = j) (9)

where L is the number of leaf nodes of the single classification
and regression tree (CART), L − 1 is the number of nonleaf
nodes of the tree, vt is the feature associated with node t ,
and î 2

t is the reduction value of the square loss after node t
is split. In the process of model training, noise information
is randomly added. If a certain feature causes a large error in
the result after adding the noise information, it means that this
feature has a greater impact on the target, and the higher the
importance score.

By calculating the importance of features, the FIS was
obtained (see Fig. 2). Results show that �β is the most
important variable, contributing as much as 32.9% to ALWC
and positively correlated with it (R = 0.498). This means
that the contribution of the parameter �β in all features
to the final prediction result is 32.9%. Although β (R =
0.476; FIS = 13.2%) and PL (R = 0.361; FIS = 10.7%)
are positively correlated and have high correlation coefficients,
their importance is much lower than �β. The reason may be
that these two parameters have an indirect impact on ALWC,
noting that the feature importance index indicates the impact
of each feature on the decision tree rather than on the real
physical mechanism [24]. Both DR (R = −0.1; FIS = 5.1%)
and H (R = −0.244; FIS = 12.39%) are negatively corre-
lated with ALWC. On the one hand, this shows that, as the
ALWC increases, aerosol particles gradually become regular
(DR decreases). On the other hand, as the altitude increases,
the aerosol concentration and water vapor content gradually
decrease, and the liquid water content decreases. The lower
feature importance of DR may be caused by the relatively
regularly shaped aerosol particles in the Guangzhou area [53],
the smaller proportion of irregularly shaped particles, and the
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Fig. 2. Selected independent features and FISs in the GBDT model for
estimating ALWC.

TABLE III

LIST OF INPUT PARAMETERS

smaller DR range. Among the meteorological factors, RH has
the greatest influence on ALWC (R = 0.47; FIS = 16.6%), and
T has less influence (R = 0.06; FIS = 5.7%). The contribution
of WS (1.5%) and WD (1.5%) to the estimation of ALWC is
low. Although the tower and ground sites are ∼10 km apart,
both sites are located in an urban area where the air is well
mixed [54]. This may explain why the wind factors have low
contributions. They are, thus, excluded from the model. The
remaining seven parameters are used in the GBDT model (see
Table III for details).

C. Overview of the ALWC Vertical Profile Estimation
Process and the Evaluation Method

Fig. 3 presents the flowchart of estimating the ALWC
vertical profile. ALWC data observed at the ground level and
on the tower level were first acquired. In the model training
and verification stage, since the observed ALWC only has two
height values, the data corresponding to these two heights of
the input profile parameters match the ALWC data in time.
The observed β was distinguished according to the ambient
humidity, and changes in β due to the influence of hygroscopic
growth were estimated. These data were then spatiotemporally
matched. To ensure that the amount of data was sufficient,
the time resolution of the training data was unified to 15 min.
Note that there is an imbalance between the amount of ground
observation data and the amount of observation data from
the tower. To ensure that the number of data samples was

Fig. 3. Flowchart showing the main processes in calculating the aerosol
liquid water profile.

Fig. 4. Main structure of the GBDT model and the processes of training
and testing.

uniform when training the model, the data matching adopted
a downsampling method [55], resulting in a total data volume
of 4500. Data from the tower and at the ground level were both
randomly divided into two datasets: 80% (3600 data samples)
and 20% (900 data samples) of the total data volume were
used for training and validating the GBDT model, respectively.
To show the specific modeling process more clearly, Fig. 4
describes the training and testing parts of the model in more
detail. In the training layer, multiple tree models are built,
and each tree model fits the calculated residuals, so as to
continuously reduce the error of the entire model and obtain
the best results. After validating the model estimates, the
profile data corresponding to the input features are input
into the trained model. Driven by the vertical variations
of the profile data of various input parameters, the derived
ALWC also varies with height, as shown in the test layer in
Fig. 4. At this point, the inversion of the ALWC profile is
completed.

To evaluate the prediction performance of the constructed
model, the performance of the trained model with new data
as input needed assessment, in particular, with regard to
overfitting [56]. After the model training was completed, cross-
validation (CV) using the k-fold CV (k-CV) method used to
judge the stability of the model was done. This validation
method randomly divides the original training dataset into k
parts, using one part as the test set and the other k − 1 parts
as the training set [57]. This process loops k times, and the
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average accuracy of the k times is used as the performance
index of the model. In this study, the value of k was 10.

IV. RESULTS AND DISCUSSION

A. Validation of the GBDT Model for Predicting ALWC
Based on Multiple Observations

As previously described, the remaining 20% of the obser-
vation data (half from the ground and half from the tower)
not used to train the model was first used to verify the
model’s prediction results. To verify the estimation results
more comprehensively, three validation exercises were carried
out: comparison validations of all validation data, ground vali-
dation data only, and tower validation data only. Fig. 5(a) com-
pares observed and estimated ALWCs for all data, showing
good agreement, with R2, RMSE, RMSPE, and MAE being
0.870, 3.28 μg · m−3, 0.57, and 1.94 μg · m−3, respectively.
The slope of the best-fit line from linear regression is 0.86,
suggesting a slight underestimation of the estimated ALWC.
Most of the higher ALWC values are associated with higher
RH levels. Fig. 5(b) presents the histogram of retrieval errors,
which are small and concentrated around zero, with a mean
value of 0.1 and a median value of −0.1. Similar comparisons
were made for the subsets of data acquired on the ground [see
Fig. 5(c) and (d)]. As with the comparison using all data, small
biases were also seen here.

The retrieval accuracy based on tower data [see Fig. 5(e)
and (f)] was overall reduced, with R2, RMSE, RMSPE, and
MAE values of 0.776, 2.18 μg · m−3, 0.68, and 1.5 μg · m−3,
respectively. The value of ALWC on the tower (at 532 m)
was generally low (<30 μg · m−3). The performance of
the model for different ALWC ranges was assessed, catego-
rized as follows: I (0–10 μg · m−3), II (0–20 μg · m−3),
III (0–30 μg · m−3), and IV (0–80 μg · m−3) (see Fig. 6). The
accuracy of ALWC retrievals at both sites gradually increased
as the range increased, becoming gradually consistent. The
poor performance in the lowest range of ALWC values was
mainly due to fewer aerosols with low ALWC [58]. In this
case, aerosols played a much lesser role than did RH, incurring
more uncertainty in the retrievals as echoed by the dispersion
of the validation data points.

Tenfold CV was done to test the degree of stability of the
model and the reliability of the results. The average accuracy
was 0.82, suggesting that the algorithm is stable.

B. ALWC Vertical Distribution

Using the aforementioned model and profile data of the
seven features listed in Table III, ALWCs estimated in the ver-
tical at the ground site were inverted. Fig. 7 shows the time
series of the vertical profiles of the four parameters at the
Guangzhou Meteorological Bureau ground site in November
2019, with a time resolution of 1 h. Not included are data
with high signal-to-noise ratios. Fig. 7(a) shows the inverted
vertical ALWC distribution, with the black line showing the
height of the planetary boundary layer (PBL) calculated by
the gradient method [59], [60]. Aerosol liquid water was
mainly concentrated below 1.5 km, which is where the bulk of
aerosols resided. The height of the boundary layer in autumn

Fig. 5. Estimated ALWC as a function of observed ALWC for (a) all data,
(c) ground data only, and (e) tower data only, colored according to RH. The
solid black line is the 1:1 line, and the red dashed line is the best-fit line
from linear regression. (Right) Histograms of the corresponding biases. R2:
coefficient of determination; N: number of samples; RMSE: root-mean-square
error (μg·m−3); RMSPE: root-mean-square-percentage error (μg·m−3); and
MAE: mean absolute error (μg·m−3).

Fig. 6. (a) Coefficient of determination (R2) and (b) RMSPE of
ALWC retrievals for different ranges of ALWC: I (0–10 μg · m−3),
II (0–20 μg · m−3), III (0–30 μg · m−3), and IV (0–80 μg · m−3).

and winter in Guangzhou ranges from 0.5 to 1.1 km [61].
In most cases, higher ALWCs were distributed within the PBL,
a part of the atmosphere that is generally more affected by
human activities [62]. Fig. 7(b)–(d) shows the time series of
the vertical distributions of RH, �β, and DR, respectively.
Some high values of liquid water content are associated with
large changes in the backscattering coefficient and relatively
low aerosol volume DRs. This suggests, to a certain extent,
that the amount of aerosol liquid water affects the morphology
of aerosol particles [21]. Overall, missing data aside, contin-
uous vertical profiles of ALWC are achievable.
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Fig. 7. Time series of vertical (a) ALWC (the input data of the near ground
and the corresponding height on the tower to obtain the vertical time series
of ALWC are also used as input during model training). (b) RH. (c) �β
and (d) DR in the observation site of the Guangzhou Meteorological Bureau
ground site in November 2019. The black line in (a) shows the height of
the boundary layer. Blank sections are missing data or data that are excluded
because of their high signal-to-noise ratios.

Fig. 8 shows the distributions of ALWC profiles under
four pollution conditions. The PBL height (PBLH) gradu-
ally decreased as the PL increased. Under relatively clean
atmospheric conditions, the average boundary layer height was
about 1 km [see Fig. 8(a)], and when the air pollution was
severe, the average boundary layer height was about 0.7 km
[see Fig. 8(d)]. When the atmosphere was clean [see Fig. 8(a)],
the overall ALWC level was low, and the change with altitude
was small. Compared with the other scenarios, there was a
weak peak at 1.5 km, with a large standard deviation. This may
be because, when the aerosol loading is low, the high RH of the
environment provided by low clouds becomes the main factor
affecting aerosol liquid water, increasing the uncertainty [63].
For moderate and sensitive PLs [see Fig. 8(b) and (c)], changes
in the vertical distribution of the ALWC were roughly the
same. The average liquid water content near the ground was
∼10 μg · m−3. When pollution was severe [see Fig. 8(d)], the
degree of change in ALWC with height was the greatest, and
the average liquid water content near the ground was highest
(∼20 μg · m−3).

C. Influence of the Proportion of ALWC on the Morphology
of Aerosol Particles

As shown in Fig. 7, the larger the proportion of the
backscattering coefficient caused by aerosol hygroscopicity
and the higher the RH of the environment, the more the
aerosol particles tended to be spherical. To more clearly
understand the influence of the proportion of liquid water in
the backscattering coefficient on the morphology of aerosol
particles, the fraction of liquid water and the volume DR of
aerosols were examined for different levels of pollution within
and outside the boundary layer (at 0.5 and 1 km, respectively,
selected according to Fig. 8) (see Fig. 9). On the whole, aerosol
particles within the boundary layer were more irregularly
shaped. The RH of the environment is one of the key factors
affecting the proportion of liquid water. A higher proportion of
liquid water corresponds to a higher ambient RH. When the air
was clean during the observation period [see Fig. 9(a)], there
was no direct relationship between the proportion of liquid

Fig. 8. Vertical distributions of mean ALWC profiles (blue lines) in the
observation site at the Guangzhou Meteorological Bureau ground site under
different pollution conditions during the observation period. The shaded blue
areas represent the standard deviations of the vertical distributions. The red
dots represent the mean PBLH. (a)–(d) Four levels of air quality: good,
moderate, sensitive, and unhealthy, respectively.

Fig. 9. Relationship between the fraction of backscattering caused by aerosol
liquid water in the total backscattering coefficient (FWC) and the volume DR.
(a)–(d) Four levels of air quality: good, moderate, sensitive, and unhealthy,
respectively. The colors correspond to two different heights, i.e., 0.5 (blue)
and 1 km (red). The lines are the best-fit lines from linear regression, and
the different sizes of the dots reflect the magnitudes of the corresponding
environmental RH levels. R2: coefficient of determination.

water and the shape of aerosol particles, likely due to the low
aerosol loading and smaller sample size. When the aerosol
loading was higher [see Fig. 9(b)–(d)], the fraction of ALWC
was negatively correlated with the volume DR of aerosols [64].
As the pollution increased, the range of variation of DR of
aerosol particles gradually becomes smaller. The reason for
this phenomenon may be that, when the pollution was severe
[see Fig. 9(b)–(d)], the concentration of aerosol particles per
unit volume was higher, and the shape of aerosol particles
was more uniform [65]. This phenomenon is manifested both
inside and outside the boundary layer, suggesting that human
activities will also have a certain impact on the characteristics
of aerosols higher in the atmosphere [66]. Results show that
the proportion of backscattering coefficient caused by aerosol
liquid water during winter pollution events in the Guangzhou
area increased by about 10%, and the DR decreased by 0.02.

V. CONCLUSION

This study developed a new approach for estimating ALWC
vertical profiles. The ALWC is associated with aerosol hygro-
scopicity and loading, RH, and other meteorological and
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environmental factors, with complex nonlinear relationships.
To date, the vast majority of ALWC-related studies focus on
the surface in situ measurements. This new remote sensing
method estimates vertical profiles of ALWC based on aerosol
information obtained by a Mie LiDAR, combined with mete-
orological profile data and hygroscopicity information, and
incorporated into the GBDT model.

The development and validation of the model benefited
greatly from a field experiment conducted at ground and tower
(532 m) sites in Guangzhou, China, in spring 2020. The
sites were equipped with a large number of state-of-the-art
instruments acquiring all pertinent measurements. The model
was proven to have high accuracy and high stability. According
to the derived vertical distribution of ALWC, ALWC was
mainly distributed within the boundary layer. Overall, ALWC
gradually decreased with height. As air pollution becomes
more severe, the rate at which ALWC decreased with height
gradually increased. Increasing ALWC also made aerosol
particles more spherical.

The retrieved vertical profiles of ALWC do not only provide
richer information about the atmospheric environment but
also help improve our understanding of the influence of
ALWC on aerosol optical parameters in the vertical direc-
tion, atmospheric chemistry, secondary aerosol formation, and
global environmental changes.
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