New Interpretable Deep Learning Model to Monitor Real-Time PM_{2.5} Concentrations from Satellite Data

Xing Yan¹, Zhou Zang¹, Nana Luo^{1, 2}, Yize Jiang¹, Zhanqing Li^{3*}

1. Additional detail for EntityDenseNet

1.1 Scattering angle Θ_t (Rahman and Dedieu, 1994):

$$\Theta_t = \cos^{-1}(-\cos(\theta_0)\cos(\theta) + \sin(\theta_0)\sin(\theta)\cos(\phi - \phi_0))$$

where θ_0 is the solar zenith angle; θ is the satellite zenith angle, $\phi - \phi_0$ is the relative azimuth angle between the viewing ϕ and solar direction ϕ_0 angles.

1.2 Normalized Vegetation Index(NDVI):

NDVI =
$$\frac{\rho_{0.86} - \rho_{2.26}}{\rho_{0.86} + \rho_{2.26}}$$

Where $\rho_{0.86}$ and $\rho_{2.26}$ are the Himawari-8 measured reflectances in the 0.86 µm and 2.26 µm bands.

1.3 The ReLU activation function:

$$f(x) = \begin{cases} x & x > 0 \\ 0 & x < 0 \end{cases}$$

1.4 Z-score method normalization:

Normalized
$$(x_i) = \frac{x_i - mean(x)}{std(x)}$$

$$std(x) = \sqrt{\frac{1}{n-1}\sum_{i=1}^n [x_i - mean(x)]^2}$$

Figure S1. Light density data from Version 1 Nighttime VIIRS Day/Night

Figure S2. EntityDenseNet $PM_{2.5}$ over mainland China on April 15 –17, 2019. The left column is the true color satellite image. The middle column is the $PM_{2.5}$ concentrations at 13:00 (local time). The right column is the daily averaged $PM_{2.5}$ concentrations.

Province	EntityDenseNet	XGBoost	RF	LightGBM	BPNN
Zhejiang	21.35	22.11	25.18	22.02	27.53
Yunnan	14.68	15.63	20.13	17.00	21.19
Xinjiang	21.07	20.92	24.78	22.49	38.60
Xizang	16.81	20.10	27.46	23.68	23.16
Sichuan	18.58	20.63	25.37	22.36	28.80
Shaanxi	23.79	26.20	30.06	27.52	33.82
Shanxi	31.00	35.21	38.85	35.28	43.67
Shandong	32.88	33.78	40.35	34.45	44.94
Qinghai	20.40	24.96	24.48	25.37	26.57
Ningxia	20.62	22.91	28.11	24.09	29.69
NeiMongol	26.76	28.22	31.78	28.80	35.49
Liaoning	30.60	29.49	35.42	30.13	43.08
Jiangxi	18.66	22.95	23.39	23.94	24.72
Jilin	26.45	27.27	30.40	27.01	34.33
Hunan	19.13	21.49	23.87	22.08	24.29
Hubei	22.11	24.93	26.97	25.42	30.35
Heilongjiang	37.79	38.61	42.88	37.94	47.78
Henan	33.95	36.13	42.46	37.43	48.16
Beijing	26.47	28.62	38.37	30.75	47.45
Tianjin	36.56	42.61	49.57	42.60	58.04
Hainan	8.69	10.07	36.53	14.44	18.37
Guizhou	15.54	17.80	21.14	17.79	20.02
Guangxi	20.31	24.21	29.56	25.31	26.59
Gansu	15.70	18.30	24.21	20.19	26.19
Fujian	16.37	16.14	21.01	17.37	22.78
Anhui	24.09	25.27	28.18	25.63	31.13
Shanghai	20.45	22.85	26.81	23.11	30.37
Chongqing	15.23	18.89	24.29	20.12	26.30
Jiangsu	23.70	25.36	29.53	25.83	33.28
Guangdong	16.02	18.48	25.53	19.83	21.27
Hebei	36.73	39.72	47.66	40.30	55.95

Table S1. The provincial RMSE for 5 machine learning models.

Province	EntityDenseNet	XGBoost	RF	LightGBM	BPNN
Zhejiang	0.47	0.45	0.30	0.47	0.17
Yunnan	0.59	0.56	0.26	0.47	0.17
Xinjiang	0.28	0.23	0.05	0.14	0.16
Xizang	0.29	0.32	0.13	0.23	0.06
Sichuan	0.54	0.53	0.34	0.48	0.33
Shaanxi	0.63	0.60	0.44	0.60	0.33
Shanxi	0.64	0.56	0.45	0.58	0.29
Shandong	0.63	0.59	0.45	0.58	0.30
Qinghai	0.43	0.37	0.17	0.33	0.09
Ningxia	0.39	0.34	0.15	0.31	0.14
NeiMongol	0.46	0.38	0.23	0.35	0.14
Liaoning	0.65	0.62	0.45	0.62	0.17
Jiangxi	0.48	0.40	0.23	0.38	0.19
Jilin	0.47	0.44	0.30	0.45	0.14
Hunan	0.41	0.36	0.21	0.34	0.21
Hubei	0.56	0.51	0.36	0.51	0.29
Heilongjiang	0.57	0.49	0.34	0.49	0.14
Henan	0.64	0.58	0.43	0.55	0.25
Beijing	0.70	0.66	0.37	0.64	0.17
Tianjin	0.68	0.56	0.42	0.57	0.20
Hainan	0.28	0.20	0.00	0.10	0.04
Guizhou	0.27	0.24	0.09	0.22	0.07
Guangxi	0.33	0.26	0.02	0.21	0.06
Gansu	0.48	0.43	0.22	0.35	0.26
Fujian	0.21	0.24	0.11	0.16	0.01
Anhui	0.52	0.49	0.33	0.48	0.22
Shanghai	0.58	0.47	0.26	0.45	0.15
Chongqing	0.50	0.40	0.30	0.37	0.27
Jiangsu	0.56	0.49	0.30	0.48	0.17
Guangdong	0.37	0.22	0.04	0.18	0.09
Hebei	0.69	0.62	0.50	0.62	0.29

Table S2. The provincial R^2 for Individual machine learning model.

Reference

Rahman, H., & Dedieu, G. (1994). Smac: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. International Journal of Remote Sensing, 15(1), 123-143.

EntityDenseNet Cloud Platform Guide

This Cloud Platform is based on a CPU sever, it allows maximum 2-3 users to run the EntityDenseNet model simultaneously. The website of this Platform is http://49.233.1.40:8888/. Please contact Dr. Yan (email: yanxing@bnu.edu.cn) to get the access and follow the schedule to use. The EntityDenseNet Cloud Platform can be used to extract spatial and temporal information from the data. Follow our release notes to stay updated on the latest EntityDenseNet releases: https://yanxingemail.wixsite.com/group.

1. When you login to the EntityDenseNet Cloud Platform, you will see:

💭 Jupyter			Quit	ogout
Files Running Clusters				
Select items to perform actions on them.			Upload New	v - 2
		Name 4	Notebook:	10
		- tuno e	Python 3	
			Other:	
nohup.out		_	Text File	kB
			Folder	_
	create a new Terminal	→	Terminal	

Create a **new Terminal** and enter the following code in the **Terminal** to create your folder. For example, suppose the name of your folder is called "Example", enter the code in the Terminal:

mkdir Example cp -r Master/. Example

💭 Jupyter	Logout
ubuntu@VM-0-6-ubuntu:-/notebooks\$ mkdir Example ubuntu@VM-0-6-ubuntu:-/notebooks\$ cp -r Master/. Example ubuntu@VM-0-6-ubuntu:-/notebooks\$	

Refresh the website you will see:

💭 jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 3
	Name ✔ Last Modified File size
C Example	1 分钟前
C Master	6 天前
nohup.out	2 分钟前 627 kB

Then the "Example" folder is created, and in the folder there are four items generated automatically. The "data" is to upload your training, validating and testing datasets, the "output" is to store the results from the model training and testing, and the "run.sh" includes all parameters of the EntityDenseNet model. After all files are set up, you can run the model on your data by running the "experiment.ipynb".

🙄 Jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New - 3
0 V Example	Name Last Modified File size
۵	几秒前
🗋 🗅 data	几秒前
Coutput	几秒前
experiment.ipynb	运行 几秒前 922 B
🗆 🗅 run.sh	几秒前 871 B

In the "data", there are three example datasets including "test.csv", "train.csv" and "valid.csv", you can easily delete them and upload your own data (or you can directly run the example data to see the result).

Files Running Clusters	
Duplicate Move View Edit	Upload New -
☑ 3 👻 🖿 / Example / data	Name V Last Modified File size
۵	几秒前
✓ ☐ test.csv	3 分钟前 1.19 MB
Z 🗅 train.csv	3 分钟前 1.02 MB
Valid.csv	3 分钟前 1.07 MB

Before using the EntityDenseNet model, we should prepare the **training**, **validation and test datasets**. The **training data** is used to train the model, the **validation data** is used for model hyperparameter optimization or tuning, and the **test data** is used to assess the performance of the trained model. The test data should be "never seen before".

The names of your uploaded training, validation and test datasets must be "train.csv", "valid.csv" and "test.csv", and the three datasets should be ".csv". The detailed description of the three datasets is as follows:

	A	В	С	D	Е	F	G	Н	Ι	J
1	X_1	X_2	X_3	X_4	X_5	X_6	C_1	C_2	C_3	Y
2	0.52	61.3	55	5.22	5.19	3.19	Ideal	Е	VS2	1.767
3	0.9	62.8	57	6.07	6.16	3.84	Good	Ι	VS1	3.398
4	1.02	58	60	6.7	6.64	3.87	Premium	F	SI2	3.996
5	1.09	61.5	57	6.62	6.65	4.08	Ideal	G	VVS2	8.97
6	1.12	61	56	6.76	6.72	4.11	Ideal	G	VS1	7.632
7	1.54	60.3	60	7.47	7.45	4.5	Premium	Н	VS2	9.081
8	0.53	63.3	56	5.13	5.17	3.26	Very Good	Н	VS1	1.561
9	1.01	63.1	60	6.35	6.39	4.02	Good	D	VS2	6.999
10	0.54	62	57	5.2	5.25	3.24	Very Good	Н	VVS1	1.846
11	1	56.4	61	6.58	6.55	3.7	Fair	Ι	SI1	3.92
12	0.38	60.7	59	4.69	4.73	2.86	Premium	E	VS1	1
13	0.71	59.3	56	5.88	5.82	3.47	Premium	F	VS2	2.84
14	1.04	61.8	55	6.54	6.5	4.03	Ideal	Н	SI2	4.368
15	0.37	61.1	57	4.63	4.66	2.84	Very Good	E	VS2	0.811
16	0.91	62.6	55	6.2	6.23	3.89	Ideal	F	VS2	5.261
17	0.43	62.3	54	4.84	4.85	3.02	Ideal	Н	VVS1	1.094
18	0.7	59.2	59	5.76	5.79	3.42	Good	D	VVS1	4.198

The continuous variables in your three datasets should be named as "X_*", and the categorical variables in your three datasets should be named as "C_*". The name of the dependent variable should be "Y". Null value is not allowed in the datasets.

2. Upload your **training**, **validation and test datasets (in /data)** by the "**upload**" on the upper right of the website.

Files	Running Clusters				
Select iten	s to perform actions on them.		Upload	New -	C
0	Im / Example / data	Name 🕹	Last Modified	File size	э
C	train.csv	Uploading	取消		
C	и.		几秒前		
	test.csv		几秒前	364	ĸВ
	valid.csv		几秒前	362	ĸВ

3. Set up all parameters of the EntityDenseNet model for model training (in /run.sh)

HIDDEN_NODES is the number of neurons in the fully connected layer.

HIDDEN_LAYERS is the number of hidden layer, it should be noted that each hidden layer includes one fully connected layer, one rectified linear unit (ReLU) layer, one batch normalization layer, and one dropout layer.

EMBEEDING_DIM is the D in the Embedding matrix (see paper).

DROPOUT PROB is the value of the dropout rate in the dropout layer.

LEARNING_RATE is the learning rate.

NUM_EPOCHS is the epochs for model training.

After setting up all parameters, don't forget to save it by the File section.

Epoch 18 -> Train Loss: 8.128909103393555 Epoch 18 -> Valid Loss: 4.186536224365234, RMSE: 2.046102756100886, R2 Score: 0.7449936186473325 Epoch 19 -> Train Loss: 7.071280047098796 Epoch 19 -> Valid Loss: 3.4168413410186766, RMSE: 1.8484698845049101, R2 Score: 0.7918765930966121 Epoch 20 -> Train Loss: 6.238333388010661 Epoch 20 -> Valid Loss: 2.8580145225524904, RMSE: 1.690566353975158, R2 Score: 0.8259152972197636 Epoch 21 -> Train Loss: 5.656378407796224 Epoch 21 -> Valid Loss: 2.355764276504517, RMSE: 1.5348498566763766, R2 Score: 0.8565079091856121 Epoch 22 -> Train Loss: 4.958307954152425 Epoch 22 -> Valid Loss: 1.8117036237716675, RMSE: 1.3459954073678853, R2 Score: 0.8896472084422483 Epoch 23 -> Train Loss: 4.689443752288819 Epoch 23 -> Valid Loss: 1.3841305418014527, RMSE: 1.1764908243053724, R2 Score: 0.915691132321313 Epoch 24 -> Train Loss: 4.346971508026123 Epoch 24 -> Valid Loss: 1.4780635919570924, RMSE: 1.2157564055571284, R2 Score: 0.9099695749266438 Epoch 25 -> Train Loss: 4.0108202463785805 Epoch 25 -> Valid Loss: 1.2124627513885498, RMSE: 1.1011188063535255, R2 Score: 0.9261476144889583 Epoch 26 -> Train Loss: 3.880736406326294 Epoch 26 -> Valid Loss: 1.2507275419235229, RMSE: 1.118359345656196, R2 Score: 0.923816852703279 Epoch 27 -> Train Loss: 3,9868891989390054 Epoch 27 -> Valid Loss: 1.0390084533691406, RMSE: 1.0193175566015071, R2 Score: 0.9367129027276917 Epoch 28 -> Train Loss: 3.605681941350301 Epoch 28 -> Valid Loss: 1.0896088886260986, RMSE: 1.0438432847642227, R2 Score: 0.9336307712252606 Epoch 29 -> Train Loss: 3.6344506969451906 Epoch 29 -> Valid Loss: 0.9871351871490478, RMSE: 0.9935467940896237, R2 Score: 0.9398725452125495 Epoch 30 -> Train Loss: 3.506718782424927 Epoch 30 -> Valid Loss: 1.0135009970664979, RMSE: 1.006727878037666, R2 Score: 0.9382665770565809 Prediction -> Test RMSE: 1.0165454290324079, R2 Score: 0.9357394727355208

In all outputs, the "Prediction -> Test RMSE", and "R2 Score" are the Root Mean Square Error (RMSE) and Determination Coefficient (R²) for the testing dataset. The RMSE and R2 for the validating dataset is presented in each epoch.

You can improve the RMSE and R^2 by tuning all parameters in /**run.sh**.

Finally, all results are stored in **/output**, such as the trained model, the prediction for your testing dataset.

💭 Jupyter	Quit	Logout
Files Running Clusters		
Select items to perform actions on them.	Upload	New - 2
0 v V Kample1 / output	me 🗣 🛛 Last Modified	File size
۵.	几秒前	
C1_C1_meta.tsv	26 分钟前	34 B
C1_vecs.tsv	26 分钟前	559 B
C1 C_2_meta.tsv	26 分钟前	14 B
Ci C_2_vecs.tsv	26 分钟前	756 B
C_3_meta.tsv	26 分钟前	32 B
Ci C_3_vecs.tsv	26 分钟前	879 B
□ □ history.csv	26 分钟前	2.37 kB
C model.pkl	26 分钟前	315 kB
C result.csv	26 分钟前	141 kB

5. Interpret the results from the EntityDenseNet model

The "C_*_meta.tsv" contains the category information for the categorical variable C_* and the "C_*_vecs.tsv" contains the embedding-based vector for the categorical variable C_*. As for the example data, there are three categorical variables (C_1, C_2, and C_3) in the "Example" data, and the model will output three "C_*_meta.tsv" files and three "C_*_vecs.tsv" files. To visualize the categorical variable C_1's embedding result, TensorFlow, originally developed by researchers and engineers working on the Google Brain team within Google's Machine Intelligence Research organization, provides a useful tool. To achieve this aim, we will upload the "C_1_meta.tsv" and "C 1 vecs.tsv" to the website http://projector.tensorflow.org/.

Embedding Projector		@ ≇
DATA	Points: 10000 Dimension: 200	Show All Isolate 101 Clear Data points selection
Stansols found * Under ZVec 10K * Label by Color by word Tag selection as Load Publish Download Label Load data from your computer Up Checkpoint: Demo datasets UMAP T-SNE PCA CUSTOM X Y Component #1 * Component #3 *	To ad the .tsv	by word ▼
PCA is approximate. @ Total variance described: 8.5%.	*	BOOKMARKS (0)
	Load data from your computer Step 1: Load a TSV file of vectors. Example of 3 vectors with dimension 4: 0.1\t0.2\t0.5\t0.9 0.2\t0.1\t5.0\t0.2 0.4\t0.1\t7.0\t0.8 Choose file	
	Step 2 (optional): Load a TSV file of metadata. Example of 3 data points and 2 columns. Note: If there is more than one column, the first row will be parsed as column labels. Pokémon\tSpecies Wartortle\tTurtle Venusaur\tSeed Charmeleon\tFlame Choose file	

Mapping the matrix of embedding layer from the trained EntityDenseNet down to 3D with UMAP enables us to calculate the Cosine Distance between different variables in this 3D Coordinate System. The smaller the Cosine Distance, the higher the correlation between two features. It reveals the **intrinsic properties of the categorical variables**. This function greatly improves interpretability of the EntityDenseNet inversion result.

Embedding Projector		@ ≢
DATA	Points: 7 Dimension: 10 Selected 7 points	Show All Isolate 7 Clear Data points selection
5 tensors found Word2Vec 10K	0	Search 🖈 by 👻
Label by		neighbors 🛛 🔸 100
Edit by 💌 Tag selection as		distance COSINE EUCLIDEAN
Load Publish Download Label		Nearest points in the original space:
Sphereize data 🕜		H 0.529
Checkpoint: C_2_vecs.tsv		J 0.725
Metadata: C_2_meta.tsv		E 0.758
		G 1.064
		F 1.327
UMAP T-SNE PCA CUSTOM	●	D 1.520
X Component #1 v Component #2 v		
Component #3		BOOKMARKS (0)

The "history.csv" is the validation result for each epoch and the "result.csv" is the prediction result based on test set. In "history.csv", the train loss, valid loss, valid RMSE and valid R² for every epoch is provided. In "result.csv", the original test dataset ("X_*", "C_*" and "Y") and prediction of Y ("predicted") are provided. The "Y" and "predicted" can be used to see the performance of model by scatter plot.

The "**model.pkl**" is the **trained model** which can be saved for other new test data. When applying this trained model to the new test data (upload the new test data to "data" file), change the "**export TASK=train**" as "**export TASK=test**" in /**run.sh** and run in **experiment.ipynb** directly.