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A B S T R A C T

Particulate matter with a mass concentration of particles with a diameter less than 2.5 μm (PM2.5) is a key air
quality parameter. A real-time knowledge of PM2.5 is highly valuable for lowering the risk of detrimental impacts
on human health. To achieve this goal, we developed a new deep learning model-EntityDenseNet to retrieve
ground-level PM2.5 concentrations from Himawari-8, a geostationary satellite providing high temporal resolu-
tion data. In contrast to the traditional machine learning model, the new model has the capability to auto-
matically extract PM2.5 spatio-temporal characteristics. Validation across mainland China demonstrates that
hourly, daily and monthly PM2.5 retrievals contain the root-mean-square errors of 26.85, 25.3, and 15.34 μg/m3,
respectively. In addition to a higher accuracy achievement when compared with various machine learning in-
version methods (backpropagation neural network, extreme gradient boosting, light gradient boosting machine,
and random forest), EntityDenseNet can “peek inside the black box” to extract the spatio-temporal features of
PM2.5. This model can show, for example, that PM2.5 levels in the coastal city of Tianjin were more influenced by
air from Hebei than Beijing. Further, EntityDenseNet can still extract the seasonal characteristics that demon-
strate that PM2.5 is more closely related within three month groups over mainland China: (1) December, January
and February, (2) March, April and May, (3) July, August and September, even without meteorological in-
formation. EntityDenseNet has the ability to obtain high temporal resolution satellite-based PM2.5 data over
China in real-time. This could act as an important tool to improve our understanding of PM2.5 spatio-temporal
features.

1. Introduction

Particulate matter with an aerodynamic diameter less than 2.5 μm
(PM2.5, i.e., a fine-mode aerosol) is an environmental parameter of great
concern worldwide (Apte et al., 2015; Yan et al., 2014). The ground-
level PM2.5 concentrations have been monitored around the world
(Liang et al., 2020; van Donkelaar et al., 2015; Yang et al., 2018), but
spatial coverage is lacking and inhomogeneous, making it difficult to
capture its variability and patterns (Han et al., 2015). To overcome this
limitation, satellite-based remote sensing of aerosols (aerosol optical
depth, AOD) has been widely used to estimate PM2.5 (van Donkelaar
et al., 2006; Liu et al., 2009; Xu et al., 2018; Lin et al., 2018; Hu et al.,
2019; Sayer et al., 2014).

Various remote sensing approaches have been developed to retrieve
PM2.5 from satellite-derived AOD (Guo et al., 2014; Gupta et al., 2006;
Hu et al., 2017; Koelemeijer et al., 2006; Kokhanovsky et al., 2009; Ma

et al., 2014; Sorek-Hamer et al., 2015; Zhang and Li, 2015). However,
inherent limitations still exist. The AOD is a columnar quantity en-
compassing aerosols of all sizes. Fine mode AOD (fAOD) is correlated
more closely with PM2.5 and is a better predictor for estimating surface
PM2.5 concentration (Zhang and Li, 2013; Yan et al., 2017). However,
the fine mode fraction (FMF, fAOD = AOD × FMF) varies largely over
land and is subject to great uncertainties during satellite retrievals (Yan
et al., 2019), and thus is not generated in the current version of C6
MODIS global scale aerosol products (Levy et al., 2013). Further, in
AOD-PM2.5 modeling, rich spectral information contained in satellite
measurements is rarely used. In addition to the satellite visible band,
the short-wave infrared (Shen et al., 2018) and thermal infrared
(Amanollahi et al., 2013) bands can also provide unique information
required for estimating surface particulate matter concentration. Un-
fortunately, the application of full spectral information from satellite
for PM2.5 retrieval is still highly limited.
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Polar-orbiting satellites only provide one measurement daily, during
daytime hours, and this makes it incapable of monitoring temporal
evolution of air quality. The Himawari-8, a new-generation Japanese
meteorological satellite launched on 7 October 2014 and first released
data on 7 July 2015, provides regional AOD data at a 10-min interval,
but no real-time PM2.5 data. Hoff and Christopher (2009) reviewed over
200 studies and concluded that the precision of PM2.5 from AOD
was ±30% (maximum) and estimates were only achieved with

additional input parameters (e.g., meteorological and atmospheric
profile information). However, obtaining meteorological and atmo-
spheric profile data at equal satellite spatial resolution (e.g., 5 km or
1 km) and coverage by model simulation is highly time consuming, and
this hinders real-time PM2.5 retrieval. Hence, the ability for satellite to
still achieve ±30% precision to monitor PM2.5 without meteorological
or atmospheric profile information is under question.

In recent years, machine learning methods have increased in

Fig. 1. Schematic diagram of the proposed EntityDenseNet in this study.
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popularity as a method for estimating PM2.5 concentrations using sa-
tellite data (Liu et al., 2017; Mao et al., 2017). However, classical
machine learning methods possess intrinsic limitations, which makes it
challenging for satellite-based PM2.5 retrieval. For example, the neural
network approach cannot directly use categorical data (Guo and
Berkhahn, 2016). The neural network requires all input variables and
output variables to be numeric (Yan et al., 2015), thus, the One-Hot
encoding is typically used for converting the categorical variable which
is then input into neural network training and prediction (Chren, 1998;
Liu et al., 2002). However, there are two key shortcomings to One-Hot
encoding: (1) it often requires an unrealistic level of computational
resources, and; (2) it treats different categorical variables absolutely
independently of each other and often ignores the informative re-
lationships between them (Guo and Berkhahn, 2016). Therefore, as
deep learning is usually a neural network-based model, one of the key
issues to overcome was determining how to handle and learn the in-
formation using categorical variables. Finally, interpreting the spatio-
temporal features from deep learning neural networks also remains
challenging. Although Reichstein et al. (2019) indicated that deep
machine learning models may act as a promising tool to extract spa-
tial–temporal features from the data, the processes required to open and
interpret this “black box” model are difficult.

In this study, we propose a new interpretable deep learning model
called EntityDenseNet to estimate real-time ground-level PM2.5 from
Himawari-8 satellite data. The EntityDenseNet is able to extract PM2.5

spatio-temporal characteristics automatically during the training pro-
cess. In contrast to the previous models, the EntityDenseNet uses full
spectral information to directly retrieve PM2.5 concentrations. A com-
prehensive discussion of this method and comparisons with BPNN,
extreme gradient boosting (XGBoost), Light Gradient Boosting Machine
(LightGBM), and RF is also presented.

2. Data and methods

2.1. Himawari-8 data

The Himarwari-8 reflectance (Bands 1 to 6) and brightness tem-
perature (Bands 7 to 16) data of a spatial resolution of 5 km were ex-
tracted from the L1 Gridded Data at 10 min intervals during daytime
(UTC 1:00–6:00) from January 2016 to June 2019. The cloud mask was
based on Ishida and Nakajima (2009). The Top-Of-Atmosphere (TOA)
reflectance used as the input data for the proposed network is calcu-
lated from the albedo reflectance data:

= albedo
cos( )0 (1)

where is the TOA reflectance and 0 is the solar zenith angle.

2.2. PM2.5, elevation and light density data

Hourly PM2.5 concentrations were collected for the same period
from 1434 monitoring stations across mainland China. The Tapered
Element Oscillating Microbalance (TEOM) was used to measure PM2.5

concentration at each site. You et al. (2016) showed that the un-
certainty in PM2.5 measured daily is ± 1.5 μg/m3. In this study, to test
the ability of the proposed model in dealing with abnormal values, no
extreme PM2.5 values (e.g., PM2.5 > 800 μg/m3) are excluded.

The digital elevation model (DEM) data of 30 m resolution was
obtained from the Shuttle Radar Topography Mission (http://srtm.csi.
cgiar.org). Light density data were provided by the Earth Observation
Group of the NOAA National Centers for Environmental Information
(NCEI). We downloaded the annual 2016 Version 1 Nighttime VIIRS
Day/Night (VIIRS Cloud Mask - Outlier Removed - Nighttime Lights) for
this study (https://ngdc.noaa.gov/eog/viirs/).

Fig. 2. Diagram of the categorical variable “Month” appended to the continuous variables for the EntityDenseNet training and prediction.
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2.3. EntityDenseNet

The structure of EntityDenseNet method is presented in Fig. 1. The
input data is first separated into two data types: categorical variables
and continuous variables. The categorical variables include year,
month, date, hour, China administrative divisions and day type
(weekday or holiday). The continuous variables consist of TOA re-
flectance from Himawari-8 bands 1 to 6, brightness temperature data
from Himawari-8 bands 7 to 16, satellite zenith angle (SEZ), solar ze-
nith angle (SOZ), satellite azimuthal angle (SEA), solar azimuthal angle
(SOA), relative azimuth angle, scattering angle, longitude, latitude,
light density, Digital Elevation Model (DEM), and Normalized Vegeta-
tion Index (NDVI). The details of calculating scattering angle and NDVI
are shown in the Supplementary material.

To process the categorical variables, rather than the One-Hot en-
coding method, we used the Entity Embeddings method (Guo and
Berkhahn, 2016). Guo and Berkhahn (2016) demonstrated that this
method not only speeds up neural networks compared with one-hot
encoding, but also helps the neural network to learn the intrinsic re-
lationship between the categorical variables. In the proposed

EntityDenseNet, we introduced the embedding layer to implement the
Entity Embeddings method, and the purpose of this layer is to map the
discrete categorical variable to the vector of continuous numbers. In the
embedding layer, a random matrix was first initialized as m × D:

×
…

m Drandommatrix
v v

v v

D

m m D

1,1 1,

,1 ,

where m is the number of unique levels of a categorical variable (for
example, if we want to map month categorical variable Jan-Dec to
embedding vectors, the m is set to 12) and D is a hyper parameter that
can be between 1 and m − 1. It should be noted that we do not have to
specify the m × D matrix values manually as they are trainable para-
meters, in other words, matrix values learned by the model during
training. Thus, first, the m × D matrix is randomly initialized and set as
parameters to EntityDenseNet model. Then, the m × D matrix values
are gradually adjusted via backpropagation during the training process,
and finally it is determined when the model has been trained. In Fig. 2,
we use the categorical variable “Month” as an example to show how the
embedding layer works in this EntityDenseNet model. A 12 × D matrix

Fig. 3. Flowchart describing the entire training process of EntityDenseNet.
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is randomly initialized first, and each row (1 × D vector) of this matrix
corresponds to specific month information. This 1 × D vector is ap-
pended to the continuous variables for neural network training and
prediction as shown in Fig. 2. The values of hyperparameter D and v in
the 12 × D matrix is updated and finally determined during the net-
work training phase.

Each continuous variable xiis first normalized by the Z-score
method (is shown in the Supplementary material) before being inputted
into the EntityDenseNet (Ben Khalifa et al., 2013). As shown in Fig. 1,

the merged categorical and continuous variables are input into a batch
normalization (BN) layer. The purpose of the BN layer is to ensure that
the data in each layer is distributed equally, which greatly accelerates
the learning speed of neural networks (Ioffe and Szegedy, 2015). Each
of the two hidden layers in EntityDenseNet includes one fully connected
layer, one rectified linear unit (ReLU) layer, one BN layer, and one
dropout layer (Yan et al., 2020). We used the ReLU as the activation
function in this study because it can overcome the problems of sa-
turation and vanishing gradients (Nair and Hinton, 2010). To prevent
overfitting, we introduced a dropout layer to each hidden layer. The
dropout method has been demonstrated to significantly reduce over-
fitting and improve the performance of neural networks (Srivastava
et al., 2014). The feed-forward operation in the hidden layer of Enti-
tyDenseNet can be described as:

= ×r yGm m m (4)

= ++ + +x W G bi
m

i
m m

i
m1 1 1 (5)

=+ +BN f xR [ ( )]i
m

i
m1 1 (6)

where m is the index of the hidden layer, ym is the vector of outputs
from layerm,Gm is the thinned vector of ym by the dropout layer. rm is a
vector of independent Bernoulli random variables, each of which has
probability p of being 1 and probability 1-p of being 0. xm is the vector
of inputs into layer m; Wm and bm are the weights and biases of layer m,
respectively. +Ri

m 1 is the output from hidden layer m+ 1 at the neuron
node i. The f () function is the ReLU activation function (Supplemen-
tary), BN [] is the BN function, the details of which are discussed in Ioffe
and Szegedy (2015).

2.4. Network training

Fig. 3 is a flowchart describing the entire training process of

Fig. 4. Scatterplot showing the performance of EntityDenseNet on trained (2016–2018) and test (2019,1.1–6.1) data sets.

Fig. 5. RMSE values for the EntityDenseNet estimates of PM2.5 in 1434 mon-
itoring sites.
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Fig. 6. Mean PM2.5 concentration during the test data period from 1 January 2019 to 1 June 2019 from ground-based measurements and EntityDenseNet retrieval.

Fig. 7. The differences between provincial averaged EntityDenseNet PM2.5 and ground-based PM2.5 (EntityDenseNet PM2.5 minus ground-based PM2.5).
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EntityDenseNet. The main purpose of EntityDenseNet is to establish the
nonlinear relationship between satellite spectral measurements and
PM2.5 concentration. Because the ground-based PM2.5 mass concentra-
tion is given in an hourly scale, the 10-min resolution of the satellite
spectral data and satellite geometry are averaged to the same hourly
scale in the training data. The integrated training data collected from
ground-based PM2.5 and satellite data are for the period from 2016 to
2018, which contains 4,490,474 samples. The initialization scheme for
EntityDenseNet is based on the Xavier initialization method (Glorot and
Bengio, 2010), which confirms that the weights are not extremely small
or big during the propagation of the network, and which initializes the
weights from a distribution:

+ ++ +
w U

n n n n
~ 6 , 6

j j j j1 1 (7)

where w is the weight at each layer, U is the uniform distribution in the
interval ( + ++ +

,n n n n
6 6

j j j j1 1
), and n is the size of the previous layer.

The hyper parameters in EntityDenseNet, including the value D and

v in the Embedding matrix (Fig. 2), the number of neurons in the fully
connected layer, and the value of the dropout rate in the dropout layer,
are determined by annual 3-fold cross-validation, the details of which
are shown in Fig. 3. We used the final values of the hyper parameters to
train all the data (2016–2018) for the network. The collected data from
2019 (437,351 samples) was used to test the trained network system.

2.5. Extraction of spatio-temporal features from EntityDenseNet

In this study we employed the Uniform Manifold Approximation
and Projection (UMAP) method (McInnes et al., 2018) to extract PM2.5

spatio-temporal characteristics from EntityDenseNet. UMAP is a di-
mension reduction technique that can provide a low dimensional re-
presentation of the high dimensional feature space of an embedded
categorical variable while maintaining global structures of the original
feature space. The UMAP algorithm consists of two steps: creation of a
graph in high dimensions followed by an optimization step to find the
most similar graph in lower dimensions. To construct the initial high-
dimensional graph, UMAP builds a fuzzy simplicial complex which
represents a weighted graph, with edge weights representing the like-
lihood that two points are connected. When the fuzzy simplicial com-
plex is constructed, UMAP projects the data into lower dimensions via a
force-directed graph layout algorithm (McInnes et al., 2018).

Mapping the matrix of embedding layer from the trained
EntityDenseNet down to 3D with UMAP enables us to calculate the
Cosine Distance between different variables in this 3D Coordinate
System. The Cosine Distance is a metric that considers the correlation of
the features vector (Zou and Umugwaneza, 2008) and is defined as

Table 1
Individual machine learning model performance.

Method Training data validation Test data validation

R2 RMSE R2 RMSE

BPNN 0.49 31.98 0.28 38.03
XGBoost 0.64 28.33 0.57 28.69
RF 0.41 36.13 0.41 33.87
LightGBM 0.64 28.11 0.56 29.39
EntityDenseNet 0.68 24.05 0.63 26.85

Fig. 8. Provincial RMSE values for 5 machine learning models.
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where xi and yi are two vectors with length n. The smaller the Cosine
Distance, the higher the correlation between two features.

2.6. Other machine learning methods

We compared four additional machine learning models to
EntityDenseNet: (1) XGBoost (Chen and Guestrin, 2016), (2) BPNN
(Mao et al., 2017), (3) LightGBM (Ke et al., 2017), and (4) RF (Hu et al.,
2017). The hyper parameters for these methods are determined through
the same training process (3-fold cross-validation) (Fig. 3), and these
models used the same input data as EntityDenseNet.

3. Results

3.1. EntityDenseNet performance

Fig. 4 consist of scatterplots depicting the relationship between
measured and estimated PM2.5 for both training and test data sets. It
should be noted that extremely high values were not eliminated from
all the datasets to enable us to test the performance of the Entity-
DenseNet model in the presence of abnormal values. In our validation
of the hourly test data, the linear regression between the Entity-
DenseNet PM2.5 and ground-based PM2.5 resulted in a slope of 0.56, a y-
intercept of 19.45, a coefficient of determination (R2) of 0.63, and an
RMSE of 26.85 μg/m3. As shown in Fig. 4, a small change in R2/RMSE
between training (R2 = 0.68, RMSE = 24.05 μg/m3) and hourly test
data sets indicates a slight over-fitting in the EntityDenseNet model. For
the daily and monthly averaged data validation, the RMSE values are
25.3 and 15.34 μg/m3 while the R2 values are 0.65 and 0.77, respec-
tively.

The RMSE values for the EntityDenseNet estimates of PM2.5 in each
of the 1434 monitoring sites are shown in Fig. 5. Overall, 63.7% and
12.7% of the monitoring sites report RMSE values below 30 μg/m3 and
over 40 μg/m3, respectively. The sites with RMSE values > 30 μg/m3

are mainly concentrated in northern China, especially in the Beijing-
Tianjin-Hebei (BTH) region and Shandong, whereas low RMSE values
(< 20 μg/m3) generally appear in western and southeastern China. As
shown in Fig. S1, the light density corresponds to the degree of eco-
nomic development, identifying the highly-developed regions of
eastern China, such as the BTH region, Yangtze River Delta (YRD), and
Pearl River Delta (PRD), which are the three major metropolitan areas
in eastern China (Haas and Ban, 2014). Clearly, EntityDenseNet gen-
erates favorable results in PRD (RMSE mainly < 20 μg/m3) and YRD
(RMSE mainly < 30 μg/m3), but the estimates in the BTH region are
rough (RMSE > 30 μg/m3).

Fig. 6 shows the mean PM2.5 concentrations during the test data
period from 1 January 2019 to 1 June 2019 from ground-based mea-
surements and EntityDenseNet retrieval. The PM2.5 spatial distribution
estimates of EntityDenseNet are highly similar to those from PM2.5

measurements. Both low value areas in western and southern China and
high value areas in northern and central China are well captured.
However, some overestimation still appears in central and southern
China; and some areas with high values of PM2.5 are underestimated. To
better understand this bias in PM2.5 retrieval, the differences between
provincial averaged EntityDenseNet PM2.5 and ground-based PM2.5

(EntityDenseNet PM2.5 minus ground-based PM2.5) are shown in Fig. 7.
The results show that overestimates of provincial averaged PM2.5 are
mainly centered in southern China, Beijing, Tibet and Qinghai, with the
highest overestimation of 8.74 μg/m3 in Tibet. Meanwhile, the under-
estimates of provincial averaged PM2.5 are mainly concentrated in
northern China and Xinjiang, with the largest underestimate of 6.06 μg/
m3 occurring in Liaoning. In general, the performance of Entity-
DenseNet PM2.5 is better than previous studies with regard to overall

Fig. 9. Provincial R2 values for 5 machine learning models.
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bias. Lyu et al. (2017) indicated that the mean bias of estimated PM2.5 is
approximately 10 μg/m3 in western, southeastern and northeastern
China using the Community Multiscale Air Quality (CMAQ) model.
However, the bias of EntityDenseNet PM2.5 is 8.74 μg/m3, 6.06 μg/m3

and 4 μg/m3 in these three regions, respectively. Xiao et al., 2018b
employed an ensemble machine learning model and showed that the
estimated PM2.5 has large residuals in most stations in YRD (about −5
μg/m3) and northern China (> 10 μg/m3). But in this study, Entity-
DenseNet performs well in YRD with a bias less than 4 μg/m3. Ad-
ditionally, the bias is typically below 4 μg/m3 in northern China.

3.2. Comparison of EntityDenseNet with other machine learning methods

Table 1 lists the performance evaluations of five methods of PM2.5

retrieval. In both training and test data validation, only EntityDenseNet
achieves an R2 value above 0.6 and it generates the lowest RMSE values
(training: 24.05 μg/m3, test: 26.85 μg/m3). Next to EntityDenseNet,
XGBoost also performs better than the other methods in terms of RMSE
(training: 28.33 μg/m3, test: 28.69 μg/m3). Notably, in the test data
validation, the R2 of LightGBM is similar to that of XGBoost, but its
RMSE (29.39 μg/m3) is slightly higher than that of XGBoost. From
Table 1, the performance estimates of the BPNN (training: R2 = 0.49/
RMSE = 31.98 μg/m3, test: R2 = 0.28/RMSE 38.03 μg/m3) and RF
(training: R2 = 0.41/RMSE = 36.13 μg/m3, test: R2 = 0.41/RMSE
33.87 μg/m3) methods indicate unsatisfactory performances compared
to the other methods, suggesting that these two methods lack the ca-
pacity to model the nonlinear relationship between satellite spectral
measurements and ground-based PM2.5.

The RMSE and R2 estimates based on validation data sets from 31
provinces of China are shown Figs. 8 and 9, respectively (the detailed
values in different provinces is shown in Supplementary Tables S1 and
S2). In all five methods, high RMSE values (> 30 μg/m3) are associated
with the Beijing-Tianjin-Hebei (BTH) regions and northeastern China.
Low RMSE values (< 15 μg/m3) are generally observed in Entity-
DenseNet estimates in most provinces of mainland China. Among the
different methods, RMSE levels derived from BPNN are high in 16
provinces (RMSE > 30 μg/m3). Fig. 9 presents the distribution of local
R2 values, which can be used to examine the spatial heterogeneity and
performance of each model. EntityDenseNet identifies the most number
of provinces with high R2 values (R2 > 0.6, 6 provinces), followed by
XGBoost and LightGBM (3 provinces). In contrast, BPNN identifies no
province with R2 > 0.6, which indicates that this method has the
worst fit between the ground-based PM2.5 and the estimated PM2.5. In
general, EntityDenseNet performs the best at predicting PM2.5 among
all the five models, in terms of RMSE and R2 values over the whole of
China or in 31 selected provinces. The local R2 distributions reported by
Ma et al. (2014) reveal R2 values of 0.48–0.54 in BTH, 0.56–0.60 in
YRD,> 0.58 in PRD, and 0.54–0.58 in the SC region. Lyu et al. (2017)
reported R2 values of 0.4–0.6 in BTH, 0.4–0.6 in YRD, 0.3–0.5 in PRD,
and 0.3–0.5 in the SC region. In contrast to these results, the R2 values
from EntityDenseNet reflect better model performance in BTH (0.6–0.7)
and the SC region (0.4–0.6). Similar levels of performance were ob-
served in YRD (0.4–0.6) but R2 values were low in PRD (0.3–0.4).

EntityDenseNet estimates were also compared with previous studies
(Table 2). The majority of the selected studies are based on the yearly-
based validation (Table 2), indicating that the test data is completely
independent of the training dataset. The results suggest that although
there were no input meteorological data and AOD, EntityDenseNet es-
timates were as good as or better than previous methods in terms of
model accuracy. For example, the model proposed by Xiao et al., 2018b
reported an R2 of 0.58 for their Ensemble ML but our study improved
this value to 0.63 in the EntityDenseNet estimates. The extremely high
ground-based PM2.5 values were not eliminated, and EntityDenseNet
can still achieve the estimation uncertainty at 26.85 μg/m3.
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3.3. EntityDenseNet application

Fig. 10 presents the output of EntityDenseNet with mainland China
as the area of coverage. Currently, the speed of retrieval of one full
satellite image of PM2.5 concentration over mainland China for Enti-
tyDenseNet is 5 s (CPU: Intel I3, 3.60 GHz; Memory: 16 GB; GPU:
NVIDIA GeForce GTX 1060 6 GB). The results of EntityDenseNet reveal
that the spatial characteristics of PM2.5 are viewed well not only at a
national scale, but also in regional and mesoscale views. In contrast to
previous studies that have usually focused on retrieving the PM2.5

concentrations at hourly (Mao et al., 2017), daily (Shen et al., 2018),
monthly (Xiao et al., 2018a), seasonal (van Donkelaar et al., 2015) or
annual (Lin et al., 2018) scales of temporal resolution. The temporal
resolution of PM2.5 retrieved by EntityDenseNet can be up to 10 min,
which much more accurately depicts how PM2.5 concentrations vary
with time. Fig. 11 shows a case of EntityDenseNet capturing the subtle
variation of PM2.5 concentrations; the right panels depict the general
hourly variation of the PM2.5 concentrations in southern Jiangsu (cir-
cled region), where the PM2.5 concentration dropped significantly from
75–95 μg/m3 to 60–75 μg/m3 on 12:00 to 13:00, April 17, 2019. The
left panels of Fig. 11 show PM2.5 concentrations every 10 min during
the same period, and illustrates the PM2.5 concentrations in southern
Jiangsu dropping slightly in the first half hour (12:00–12:30) and then
dramatically decreasing in the next 10 min (12:30–12:40), and later
decreasing slowly again until the end (12:40–13:00). Hence, Entity-
DenseNet PM2.5 with its fine temporal resolution, estimates not only the
general variation of PM2.5, but it also captures sudden changes in PM2.5

concentration. In addition, the results from EntityDenseNet are

produced without a long time lag, thus generating near real-time sur-
face PM2.5 concentrations at a certain spatial scale. However, it should
be noted that due to the lack of ground-based measurements data at the
10 min scale, the 10-min EntityDenseNet PM2.5 product is not well
validated compared to the hourly-level product.

Fig. S2 presents three cases of the application of EntityDenseNet,
including true color maps (left), real local time (13:00) (middle), and
daily averaged (right) PM2.5 distributions in mainland China on April
15–17, 2019. The true color maps show the satellite image in this
period including the real cloud covering over China. In cloud-free re-
gions, the PM2.5 spatial distributions as well as their temporal varia-
tions are well-retrieved. Northern China also showed high concentra-
tions of PM2.5 during the same period. Another hotspot of high PM2.5

concentrations is Yunnan, where PM2.5 concentrations can reach up to
45–55 μg/m3. Fig. S2 confirms that EntityDenseNet can retrieve PM2.5

data for a specific local time or daily temporal resolution covering a
large spatial scale.

3.4. Spatio-temporal features extraction by EntityDenseNet

The spatial characteristics of PM2.5 between different provinces of
China extracted by EntityDenseNet is displayed in Fig. 12. The province
features matrix from the trained EntityDenseNet embedding layer is
mapped to 3D by UMAP (Fig. 12a). The Cosine Distance between dif-
ferent provinces was calculated based upon Fig. 12a. In the Beijing-
Tianjin-Hebei region, Tianjin had a closer Cosine Distance with Hebei
(0.26) than with Beijing (0.45). This result illustrates that the PM2.5 in
Tianjin was influenced more by the PM2.5 from Hebei than Beijing

Fig. 10. Output of EntityDenseNet-based PM2.5 concentration in different scales of view.
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(Fig. 12a,b). This result is consistent with the WRF-Chem modeling
outcome which demonstrated that PM2.5 from Hebei had a greater
contribution to Tianjin’s PM2.5 than Beijing’s (Meng et al., 2020). Xue
et al. (2014) also indicated that the contribution of Hebei to the PM2.5

of Tianjin is 26%, while its contribution to Beijing is 24%. In Jiangxi,
China, a closer correlation with the PM2.5 from Hunan (Cosine Dis-
tance = 0.51) than the Hubei’s PM2.5 (Cosine Distance = 0.54) or other
neighboring provinces (Cosine distance > 0.6) was identified. Ac-
cording to source apportionment of the PM2.5 in Jiangxi, other pro-
vinces contributed approximately 48% of PM2.5 annually (Xue et al.,
2014). In the present study, EntityDenseNet further indicated that the
Jiangxi PM2.5 was most closely associated with Hunan. From Fig. 12,
EntityDenseNet improves the understanding of the impact of PM2.5

pollution on the provincial scale.
The month features matrix from the trained EntityDenseNet em-

bedding layer is mapped by UMAP (Fig. 13). Although meteorological
data were not used in retrieving PM2.5, EntityDenseNet can still detect
the seasonal features of PM2.5 over China. Three groups of months with
the closest Cosine Distance were observed: December, January and
February (DJF), March, April and May (MAM), as well as July, August
and September (JAS). DJF and MAM are winter and spring months in
China and have similar meteorological conditions. Similarity level of
PM2.5 was detected by EntityDenseNet in these two seasons even
without temperature and humidity information. While the group JAS
are not technically deemed summer months in China, the interpretation
by EntityDenseNet revealed that the PM2.5 is more closely related in
JAS, rather than in the summer months of June, July and August.

4. Discussion

Fig. 4 shows a few extreme PM2.5 values that may be due to mal-
functioning PM2.5 monitors. In total, extremely high PM2.5 values
(> 400 μg/m3) comprise 0.07% (N = 4,490,474) and 0.05%
(N = 437,351) of the total observations of the training and test data
sets, respectively. Significant underestimation of PM2.5 may be due to
local PM2.5 sources such as coal burning, atmospheric dust, or the in-
fluence of marine salt in coastal provinces (Luo et al., 2017). Also, as
the test data were gathered during winter and spring when many pro-
vinces in northern China experience snow, low-level clouds, and fre-
quent haze days, all of which may result in PM2.5 underestimations in
northern China (Geng et al., 2015). In addition, it is possible that very
low PBLH may constrain PM2.5 to the lower atmosphere, thus short-
ening the path length for satellite observation and increasing the un-
certainty between satellite spectral measurements and PM2.5 (Gupta
and Christopher, 2009).

The BTH region is one of the most populated and polluted regions in
China due to its long-term rapid economic development and in-
dustrialization (Ma et al., 2016a, 2016b). The RMSE for EntityDenseNet
PM2.5 in this region is relatively high as shown in Fig. 5. High RMSE
values in the BTH region agree with results of previous studies. For
example, Zheng et al. (2015) estimated the RMSE of three major me-
tropolitan areas in China (BTH region, YRD, and PRD), and found that
the RMSE of the BTH region is ~1.3 and ~1.9 times higher than that of
the YRD and PRD regions, respectively. Chen et al. (2018) calculated
the provincial RMSE in China from three methods: the RF Model,
Generalized Additive Model (GAM) and Non-linear Exposure-Lag-Re-
sponse Model (NEM), and found that the RMSE values of both GAM and
NEM are the highest in BTH region. From these results, we suggest that
the accurate retrieval of PM2.5 in the BTH region by satellite data is an
issue that needs further exploration.

In the EntityDenseNet application, the only source of input data is
satellite data. This feature means that it can retrieve real-time data on
the spatial distribution of PM2.5 when the satellite data is available (the
JAM releases the Himawari-8 data in real-time). Compared with other
machine learning methods (Table 1), EntityDenseNet provides a better
solution for estimating ground-level PM2.5 concentrations from satellite
measurements data. This because with EntityDenseNet, we have in-
troduced many features and technologies that improve the capacity to
describe the nonlinear relationship between satellite data and PM2.5. In
particular: (1) the Entity Embeddings method can learn the informative
relationship between categorical variables (Guo and Berkhahn, 2016);
(2) a dropout layer (Srivastava et al., 2014) for each hidden layer in the
EntityDenseNet has been introduced to reduce the overfitting problem;
(3) the problems of saturation and vanishing gradients are overcome by
using the ReLU as the activation function (Nair and Hinton, 2010); and
(4) the data between the inputs in EntityDenseNet are normalized by
BN technology (Ioffe and Szegedy, 2015), which fixes the mean and
variance of the inputs to accelerate the training process. As shown in
Table 1, when processing the same information, EntityDenseNet is more
accurate and reliable than BPNN, XGBoost, LightGBM, and RF. More-
over, the EntityDenseNet can map similar values close to each other
within the 3D space by UMAP (McInnes et al., 2018) and this reveals
the intrinsic properties of the categorical variables. This ability greatly
improves interpretability of the EntityDenseNet inversion result. Enti-
tyDenseNet can detect the PM2.5 relationship between different pro-
vinces and months (Figs. 12 and 13). This form of deep learning ap-
proach-based spatio-temporal analysis could be extremely valuable for
other earth data and scenarios (refer to Reichstein et al., 2019). How-
ever, the spatio-temporal features of PM2.5 are complicated, as these
may be influenced by other pollutants. Hence, further studies are re-
quired to comprehensively validate the interpretation of the Entity-
DenseNet.

Fig. 11. Application of EntityDenseNet on April 17, 2019 from 12:00 to 13:00
(local time) over southern Jiangsu, China.
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5. Conclusions

This study developed an interpretable deep learning model named
EntityDenseNet for real-time ground-level retrieval of PM2.5 con-
centrations from satellite measurement data. The PM2.5 were retrieved
from Himawari-8 observations over mainland China in 2019. As vali-
dated with ground-based measurements, the results obtained by
EntityDenseNet reflected a good retrieval capability at hourly, daily and
monthly time scales with RMSE values of 26.85, 25.3 and 15.34 μg/m3,
respectively. Compared to BPNN, XGBoost, LightGBM, and RF the
performance of EntityDenseNet on a common set of training and test
data shows the best correlation (R2) and smallest difference (RMSE)
values with the true PM2.5 data. In addition, EntityDenseNet can out-
perform most models presented in previous studies for both temporal
resolution and predictive accuracy. The spatial features of PM2.5 in-
terpreted by EntityDenseNet demonstrates that in the Beijing-Tianjin-
Hebei area, the PM2.5 in Tianjin is more subject to impacts from Hebei
than Beijing, which is consistent with previous studies (Meng et al.,
2020; Xue et al., 2014). This relationship was further explored using the
deep learning approach in the present study. Without meteorological
data, EntityDenseNet can still detect the seasonal features of PM2.5 over
China, which indicated that the PM2.5 appears increasingly similar in
three month groups over mainland China: (1) December, January and

February, (2) March, April and May, (3) July, August and September.
This study revealed that a new, deep learning model achieves higher

accuracy when retrieving real-time ground-level PM2.5 concentrations
directly from satellite spectral data. Further, it has the interpretable
ability to extract spatio-temporal features of PM2.5. Owing to the high
temporal resolution of Himawari-8, this new, deep learning model can
estimate large-scale PM2.5 concentrations at hourly intervals. This will
improve our understanding of how PM2.5 concentrations vary in fine
temporal resolution. We have created a EntityDenseNet Cloud Platform
(http://49.233.1.40:8888/), it is free to access and researchers can use
it for their own data modeling. The guide of this Cloud Platform is
shown in the Supplementary material.
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