Supplementary information:

Cooperative simultaneous inversion of satellite-based real-time PM_{2.5} and ozone

levels using an improved deep learning model with attention mechanism

Xing Yan, Chen Zuo, Zhanqing Li, Hans W. Chen^{*}, Yize Jiang, Bin He, Huiming Liu,

Jiayi Chen, Wenzhong Shi

Variable	ole Description U		Spatial	Temporal	Data Source	
		2 1	Resolution	Resolution		
MOD02SSH	Radiance	W m ⁻² μm ⁻¹ sr ⁻¹	5 km	Daily		
MOD09	Surface reflectance	-	$0.05^{\circ} \times 0.05^{\circ}$	Daily	LAADS DAAC (https://ladsweb. modaps.eosdis. nasa.gov/)	
MOD13	Normalized difference vegetation index	-	0.05°×0.05°	16-Day		
MOD11	Land surface temperature	Κ	1000 m	Daily		
MCD12	Landcover	Land cover	500 m	Annual		
		type				
GEOS-CF	On-going 5-day forecasts of PM _{2.5}	$\mu m m^{-3}$	0.3°×0.25°	3-Hour	GMAO (https://gmao. gsfc.nasa.gov/)	
	On-going 5-day forecasts	μm m ⁻³				
	of Ozone					
RH	Relative humidity	%			National Climatia Data	
T2M	2-m air temperature	Κ		TT 1		
WS	Wind speed	m s ⁻¹		Hourly	rede page gov/)	
BLH	Boundary layer height	m			neue.noaa.gov/)	
	Visibility data observed					
Visibility	from meteorological	m				
	stations					
PM _{2.5}	Ground-based PM _{2.5}	μm m ⁻³			CNEMC	
O ₃	Ground-based O3	$\mu m m^{-3}$		Hourly	(http://www.cnemc.cn)	

Table S1. Summary of the data sources used in this study.

Variable	Class	Name	Detail Description		
		B1-B12, B17-B36	Band 1-36, solar and satellite zenith angle, and azimuth angles		
	Satellite Data	B1-B7	Surface reflectance		
		NDVI	Normalized difference vegetation index		
		LST	Land surface temperature		
	Global Modeling and	GEOS-PM2.5	Real-time PM _{2.5} concentration		
Continuous variables	Assimilation	GEOS-O3	Real-time O ₃ concentration		
	Ground-based measurement data	Past-PM2.5	PM _{2.5} in the past 20 days		
		Past-O3	O ₃ in the past 20 days		
		BLH	Boundary layer height		
		T2M	2-m air temperature		
		WS	Wind speed		
		RH	Relative humidity		
		LC	Land cover		
		Prov	Province region		
Categorical variables		Month			
		Season			
		P-M	Province-month pairwise feature		

Table S2. Summary of the input Variables in SOPiNet.

Value	Land use type				
1	Evergreen Needleleaf Forests				
2	Evergreen Broadleaf Forests				
3	Deciduous Needleleaf Forests				
4	Deciduous Broadleaf Forests				
5	Mixed Forests				
6	Closed Shrublands				
7	Open Shrublands				
8	Woody Savannas				
9	Savannas				
10	Grasslands				
11	Permanent Wetlands				
12	Croplands				
13	Urban and Built-up Lands				
14	Cropland/Natural Vegetation Mosaics				
15	Permanent Snow and Ice				
16	Barren				
17	Water Bodies				

Table S3. The class types and their abbreviations of land use type in Figure S2.

Value	Province	Value	Province
1	Zhejiang	18	Hubei
2	Yunnan	19	Heilongjiang
3	Xinjiang	20	Henan
4	Xianggang	21	Beijing
5	Xizang	22	Tianjin
6	Taiwan	23	Hainan
7	Sichuan	24	Guizhou
8	Shaanxi	25	Guangxi
9	Shanxi	26	Gansu
10	Shandong	27	Fujian
11	Qinghai	28	Aomen
12	Ningxia	29	Anhui
13	NeiMongol	30	Shanghai
14	Liaoning	31	Chongqing
15	Jiangxi	32	Jiangsu
16	Jilin	33	Guangdong
17	Hunan	34	Hebei

Table S4. The class types and their abbreviations of province in Figure S2.

	Cooperative inversion	Full coverage	Model	Spatial resolution	Validation method	R ²	RMSE(µg/m ³)	Literature
PM _{2.5}	no	no	STET	1 km	train:2018 test:2017	0.65	-	Wei et al.(2020) ¹
	no	no	JFRF	5 km	train:2018 test:2019	0.70	18.39	Dong et al.(2022) ²
	no	no	EntityDenseNet	5 km	train:2016-2018 test:2019	0.65	25.30	Yan et al. $(2020)^3$
	no	no	SIDLM	3 km	train:2016-2018 test:2019	0.70	15.30	Yan et al.(2021) ⁴
	no	yes	TAP PM _{2.5}	10 km	Time-based CV	0.58	27.50	Geng et al.(2022) ⁵
	no	yes	NSTC model	1 km	Time-based CV	0.62	27.70	Huang et al. $(2022)^6$
	no	yes	ML-CMAQ	10 km	train:2013-2016 test:2017-2019	0.62	27.80	Xue et al.(2019) ⁷
	yes	yes	SOPiNet	5 km	train:2019-2021	0.72	16.45	This study
					test:2022	0.72		
O ₃	no	no	Semi-SIDLM	5 km	train:2016-2018 test:2019	0.71	21.88	Yan et al.(2021) ⁸
	no	no	ExDLM	5km	Time-based CV	0.78	18.35	Luo et al.(2022) ⁹
	no	no	XGBoost	10 km	Time based CV	0.78	21.47	Liu et al(2020) ¹⁰
	no	no	SGLboost	2km	train:2017-2018 test:2019	0.72	25.11	Wang et al.(2022) ¹¹
	yes	yes	SOPiNet	5km	train:2019-2021 test:2022	0.82	12.60	This study

Table S5. Previous studies in China. We only use the time-based validation method result for comparison.

Tuble 50. The duming the interence time					
Model	Training (each epoch)	Inference time			
SOPiNet (PM _{2.5} +O ₃)	89±3 s	17±2 s			
Single Modeling (PM _{2.5}) + Single Modeling (O ₃)	138±7 s	25±2 s			

Table S6. The training and inference time

per epoch (mean \pm std. dev. of 100 epoch)

Figure S1. (a) CNEMC air quality monitors in China. (b) Spatial distribution of the meteorological stations. (c) The Integrated Global Radiosonde Archive sites in China.

Figure S2. Spatial distribution of the geographical variables used in this study. The detailed descriptions for their legend are in Tables S2-S3.

Figure S3. Spatial distribution of the meteorological variables during 2019-2022.

Figure S4. Spatial distribution of the sites with missing data in three intervals. The detailed descriptions for their information can be found in Table S4.

Figure S5. The RMSE validation of SOPiNet and single modeling for different levels of missing data.

Figure S6. Evaluation of ARIMA model of PM_{2.5} (a) and O₃ (b). (c-f) ACF and PACF plots to determine the p and q parameters in the ARIMA model.

Optimization of the number of past days' information for PM2.5 and O3

Information about O_3 and $PM_{2.5}$ from previous days is crucial for the estimation of real-time O_3 and $PM_{2.5}$ by the developed SOPiNet. As seen in Figures S7 a and b, the linear correlation coefficients between current $PM_{2.5}$ or O_3 concentrations with their past values range from 0.66 to 0.39 and 0.78 to 0.55, respectively. However, the correlation coefficient cannot directly aid in the inference of the optimal number of past time periods to include for $PM_{2.5}$ and O_3 due to autocorrelations between nearby days. Here, we used the Autoregressive Integrated Moving Average (ARIMA) model to determine the number of past days to use as input to SOPiNet. The model is expressed as ARIMA(p, d, q), where the parameters p, d, and q determine the structure of the model, which is a combination of auto-regression AR(p), moving average MA(q), and differencing degree d. The mathematical formula for the ARIMA(p, d, q) model can be expressed as follows:

$$\left(1 - \sum_{i=1}^{p} \phi_i L^i\right) (1 - L)^d X_t = \left(1 + \sum_{i=1}^{q} \theta_i L^i\right) \varepsilon_t \quad (12)$$

where L is the lag operator, ϕ_i is the parameter for the auto-regressive part of the model, θ_i is the parameter for the moving average part, and ε_i denotes error terms.

To determine the optimum number of input days, we fitted ARIMA models to the PM_{2.5} and O₃ concentrations in 2019–2020 using a varying number of past days in the models, and validated the results during 2021. We used a first degree of differencing to construct stationary time series and determined the optimal parameter values for p and q based on the Akaike Information Criterion using the Auto-ARIMA function (the detailed can be found in Supplementary information-Determine the parameter for ARIMA model, Figure S8). Figures S7c and d present the correlation coefficient (R) and root-mean-square error (RMSE) average values of each ARIMA-based PM_{2.5} and O₃ modeling results for different numbers of past days as input. The red dots in the graph indicate the R of the modeling results relative to the number of past days and the box line diagram shows the corresponding RMSE. For O₃, the results show a clear peak in R when using the past 20 days as input, with R being 0.73 and RSME being 12.19 μ g/m³. As for PM_{2.5}, when including information on the past 20 days, R is 0.60 and RMSE is 21.82 μ g/m³. Therefore, based on these results, we chose to use 20 days of

information as inputs for the SOPiNet real-time O₃ and PM_{2.5} retrievals.

Figure S7. (a-b) Pearson correlation coefficient (R) between PM_{2.5} (a) and O₃ (b) at the current time with values from the past 10 days. (c-d) Validation of predicted PM_{2.5} and O₃ from the ARIMA model using different numbers of past days as training data. The red dots above show the correlations between the predicted and the measured PM_{2.5} and O₃ concentrations. The blue dashed line shows the fitted results and the shading indicates half of the standard deviation. The box plots below show the root-mean-square error (RMSE) values for the predicted results. The dashed boxes highlight the results when using 20 days of training data, with the corresponding R (RMSE) values shown below (above) the boxes.

Determine the parameter for ARIMA model

To find the optimum number of input days, we tested a range of ARIMA models fitted using a varying number of past days from 2 to 30 days in intervals of 2 days. We constructed a sliding scale prediction based on the common ARIMA model. For example, when input steps is 30, we entered the ground observations from the last thirty days as training data and slide the prediction until all the data in the test datasets are defined (see Figure S7). For each ARIMA model, we automatically selected the optimal parameters using the auto-ARIMA package (https://github.com/alkaline-ml/pmdarima). There are three steps to determine the parameters¹²⁻¹³. To make the datasets stationary, the first step is differencing the time series. In this package, the number of differences d is determined using repeated KPSS tests. The values of p and q were then chosen by minimizing the AIC after differencing the data d times by a stepwise search to traverse the model space. Finally, the model with the smallest AIC value is chosen. To ensure that our data were usable with the ARIMA model, we first performed a manual test and determined the parameters using the partial autocorrelation function (PACF) for p and autocorrelation function (ACF) for q. The manual tests were consistent with the auto-ARIMA results.

Figure S8. ARIMA flow chart of how to find the optimum number of input days.

Figure S9. (a, c) Performance of SOPiNet real-time monitoring results in 2022. The lines represent the SOPiNet estimated daily mean, and the shadings show the plus/minus one standard deviation. Whiskers on dots are the daily observed value plus/minus one standard deviation. (b, d) Accuracy of SOPiNet alerts of PM_{2.5} and O₃ in heavily polluted conditions (>100 μ g/m³), respectively. (e-j) Comparison of SOPiNet with GEOS-CF results in two cases. (e) and (h) show the in situ concentration measurements; (f) and (i) the SOPiNet retrievals; and (g) and (j) the GEOS-CF forecast values.

References:

1.J. Wei, Z. Q. Li, M. Cribb, W. Huang, W. H. Xue, L. Sun, J. P. Guo, Y. R. Peng, J. Li, A. Lyapustin, L. Liu, H. Wu and Y. M. Song, *ATMOS CHEM PHYS*, 2020, **20**, 3273-3289.

2.L. C. Dong, S. W. Li, J. Xing, H. Lin, S. S. Wang, X. Y. Zeng and Y. M. Qin, *ATMOS ENVIRON*, 2022, **273**.

3.X. Yan, Z. Zang, N. N. Luo, Y. Z. Jiang and Z. Q. Li, ENVIRON INT, 2020, 144.

4.X. Yan, Z. Zang, Y. Z. Jiang, W. Z. Shi, Y. S. Guo, D. Li, C. F. Zhao and L. T. Husi, *ENVIRON POLLUT*, 2021, 273.

5.G. N. Geng, Q. Y. Xiao, S. G. Liu, X. D. Liu, J. Cheng, Y. X. Zheng, T. Xue, D. Tong, B. Zheng, Y. R. Peng, X. M. Huang, K. B. He and Q. Zhang, *ENVIRON SCI TECHNOL*, 2021, **55**, 12106-12115.

6.C. H. Huang, J. L. Hu, T. Xue, H. Xu and M. Wang, ENVIRON SCI TECHNOL, 2021, 55, 2152-2162.

7.T. Xue, Y. X. Zheng, D. Tong, B. Zheng, X. Li, T. Zhu and Q. Zhang, *ENVIRON INT*, 2019, **123**, 345-357.

8.Z. Zang, Y. S. Guo, Y. Z. Jiang, C. Zuo, D. Li, W. Z. Shi and X. Yan, *INT J APPL EARTH OBS*, 2021, **103**.

9.N. Luo, Z. Zang, C. Yin, M. Liu, Y. Jiang, C. Zuo, W. Zhao, W. Shi and X. Yan, *ATMOS ENVIRON*, 2022, **290**, 119370.

10.R. Y. Liu, Z. W. Ma, Y. Liu, Y. C. Shao, W. Zhao and J. Bi, ENVIRON INT, 2020, 142.

11.Y. Wang, Q. Q. Yuan, L. Y. Zhu and L. P. Zhang, GEOSCI FRONT, 2022, 13.

12.D. Y. Fan, H. Sun, J. Yao, K. Zhang, X. Yan and Z. X. Sun, ENERGY, 2021, 220.

13.H. F. Zou, F. F. Yang and G. P. Xia, *Time series forecasting model using a hybrid ARIMA and neural network*, 2005.