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A B S T R A C T   

Ground-level fine particulate matter (PM2.5) and ozone (O3) are air pollutants that can pose severe health risks. 
Surface PM2.5 and O3 concentrations can be monitored from satellites, but most retrieval methods retrieve PM2.5 
or O3 separately and disregard the shared information between the two air pollutants, for example due to 
common emission sources. Using surface observations across China spanning 2014–2021, we found a strong 
relationship between PM2.5 and O3 with distinct spatiotemporal characteristics. Thus, in this study, we propose a 
new deep learning model called the Simultaneous Ozone and PM2.5 inversion deep neural Network (SOPiNet), 
which allows for daily real-time monitoring and full coverage of PM2.5 and O3 simultaneously at a spatial res
olution of 5 km. SOPiNet employs the multi-head attention mechanism to better capture the temporal variations 
in PM2.5 and O3 based on previous days’ conditions. Applying SOPiNet to MODIS data over China in 2022, using 
2019–2021 to construct the network, we found that simultaneous retrievals of PM2.5 and O3 improved the 
performance compared with retrieving them independently: the temporal R2 increased from 0.66 to 0.72 for 
PM2.5, and from 0.79 to 0.82 for O3. The results suggest that near-real time satellite-based air quality monitoring 
can be improved by simultaneous retrieval of different but related pollutants. The codes of SOPiNet and its user 
guide are freely available online at https://github.com/RegiusQuant/ESIDLM.   

1. Introduction 

There have been numerous occurrences of air pollution episodes 
with high fine particulate matter (PM2.5) and ozone (O3) concentration 
worldwide in recent decades (Zang et al., 2021a,b; Luo et al., 2022). 
These pollutants have adversely affected human health and can cause 
various diseases (Smith et al., 2009; Patella et al., 2018; Yang et al., 
2022a). In China particularly, the government has prioritized PM2.5 and 
O3 synergistic control (Xiao et al., 2022). Under these issues, real-time 
PM2.5 and O3 monitoring is critical to provide immediate alerts to resi
dents and to help governments take timely actions (Kerekes et al., 2020; 

Geng et al., 2021; Ojha et al., 2022). 
Although ground-based measurement sites can provide real-time 

surface PM2.5 and O3 information, the availability of timely updates of 
PM2.5 and O3 levels for locations with no monitoring station is severely 
limited (Chae et al., 2021). To address this limitation, satellite-based 
technology has been widely applied for spatial coverage of PM2.5 and 
O3 estimation (Li and Cheng, 2021; Tritscher et al., 2021; Bai et al., 
2022; Zhu et al., 2022). Because the levels of air pollutants vary 
noticeably in space and time, and are associated with complex interplay 
between meteorological factors, deep learning-based methods have 
been widely utilized for PM2.5 and O3 retrievals (Wang et al., 2021; Yan 
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et al., 2021; Zang et al., 2021a,b; Pruthi and Liu, 2022). Although deep 
learning-based PM2.5 and O3 retrievals are readily available, data ob
tained via historical mapping and real-time monitoring are clearly 
different. In historical mapping based on deep learning, the data are 
typically randomly sampled into three subsets (Yan et al., 2020) 
(training, validation, and test data), and the network is trained on 
samples both before and after the predicted events. However, for 
real-time monitoring applications the training data include only past 
information. Consequently, the accuracy of PM2.5 and O3 data in 
real-time monitoring is significantly lower than that in historical data 
mapping (Geng et al., 2021), and this limitation needs to be addressed 
urgently. 

Currently, many developed deep learning models are designed only 
for individual estimation of PM2.5 or O3 (Li and Cheng, 2021; Yan et al., 
2021; Zang et al., 2021a,b; Bai et al., 2022; Luo et al., 2022). However, 
PM2.5 and O3 have common precursors, such as volatile organic com
pounds (see Fig. 1a), and both pollutants can be generated through the 
secondary reaction process, and should thus be linked to each other 
(Chen et al., 2019). This suggests that the monitoring accuracy for PM2.5 
and O3 can be enhanced by exploiting their correlation in a joint 
retrieval. Additionally, the amount of training samples has a noticeable 
effect on model performance (D.R. Liu et al., 2020). For PM2.5 and O3 
modeling, the training data are commonly collected from surface 
monitoring sites. However, owing to calibration, maintenance, or data 
transmission issues of monitoring instruments, PM2.5 or O3 data can be 
missing for certain periods of time (Fig. 1b), and this phenomenon may 
be severe in specific sites (Samal et al., 2021). Gaps in training data can 
lead to high uncertainty in deep learning-based models (Shen et al., 
2018). 

PM2.5 and O3 have distinct temporal characteristics (Deng et al., 
2022) and present PM2.5 and O3 concentrations can partly depend on 
past air pollutant levels (Li et al., 2020). However, predicting PM2.5 and 
O3 concentrations using temporal feature information in deep learning 
models continues to be challenging. Limited studies consider the his
torical temporal characteristics for PM2.5 or O3 modeling (Li et al., 2017; 
Pak et al., 2020). For this issue, a long short term memory (LSTM) 
network has been developed and incorporated in many deep learning 
models to capture the PM2.5 or O3 long-term dependency within a 
particular time range (Wen et al., 2019; Pak et al., 2020; Wu et al., 
2020). Wang et al. (2021) revealed that employing LSTM to describe 
time-dependent effects promotes accurate estimation of PM2.5 compared 
to the general random forest model. However, in PM2.5 and O3 time 
series, the effect of different past days could vary. This necessitates 
capturing the most important past time points and giving higher weights 

to them, which cannot be performed by LSTM (Abbasimehr and Paki, 
2022). 

To fill the research gap and overcome the aforementioned limita
tions, we propose a new deep learning model that simultaneously per
forms O3 and PM2.5 real-time monitoring, the Simultaneous Ozone and 
PM2.5 inversion deep neural Network (SOPiNet). In contrast to general 
deep learning models for single PM2.5 or O3 estimation, SOPiNet jointly 
learns PM2.5 and O3 information and retrieves them simultaneously. We 
designed a two-task deep neural network framework for SOPiNet with a 
novel loss function, which allows the model to effectively use more 
training data. In addition, multi-head attention was introduced to make 
the network learn temporal relationships across different past days. We 
tested and evaluated SOPiNet for real-time PM2.5 and O3 monitoring in 
China in 2022. The evaluation demonstrates that joint learning by 
SOPiNet for simultaneous PM2.5 and O3 monitoring leads to improved 
general performance compared to single PM2.5 or O3 retrievals. 

2. Materials and methods 

2.1. Ground-based monitoring data 

Since 2013, China has established a large number of ground-based 
air quality monitoring stations that can provide hourly air pollutant 
information. (Fig. S1a). We collected PM2.5 and O3 in situ observations 
from 2019 to 2022 at 11:00 a.m. local time synchronized with over
passes of the MODIS Terra satellite. Abnormal values were removed at 
each site using the method reported by Zhong et al. (2022), which 
considers values three standard deviations away from the moving 
average over 1 month as outliers. 

Ground-based meteorological data were collected from the National 
Climatic Data Center (NCDC). As a publicly available dataset, the NCDC 
provides access to over four hundred ground-based monitoring stations 
in China (Fig. S1b). In addition, boundary layer heights were calculated 
from the Integrated Global Radiosonde Archive (Fig. S1c) using the 
Richardson method. Compared with reanalysis data which are provided 
with a time delay (e.g., around 5 days for ERA5 and 1 month for 
MERRA2), the station data can offer more timely meteorological infor
mation for real-time applications. All collected air temperature, relative 
humidity, wind speed, boundary layer height, and visibility data were 
interpolated to a 5-km grid using the Empirical Bayesian Kriging method 
(Krivoruchko and Gribov, 2019). 

Fig. 1. (a) Schematic of potential links between 
particulate matter 2.5 (PM2.5) and ozone (O3). Model 
1 and Model 2 retrieve the two air pollutant con
centrations independently, while a potential Model 3 
could jointly retrieve PM2.5 and O3. (b) Example of 
missing data from a hypothetical ground-based sta
tion due to sensor shutdown, system crashes, and 
other possible issues, which is a common problem for 
ground-based air quality measurements. Abbrevia
tions: VOCs = volatile organic compounds.   
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2.2. MODIS data 

In this study, the MODIS MOD02SSH data at a spatial resolution of 5 
km were obtained from the Atmosphere Archive and Distribution Sys
tem website (https://ladsweb.modaps.eosdis.nasa.gov). The 
MOD02SSH data product contains 36-band calibrated and geolocated 
at-aperture radiances, generated from MODIS Level-1A scans of raw 
radiance. As certain bands exhibit severe deficiencies, we used infor
mation from only band 1 to 12 and band 17 to 36 to as input for the 
model. Furthermore, we used MOD09, MOD13, MOD11, and MOD12 to 
provide surface reflectance, vegetation cover, land surface temperature, 
and landcover data sources for retrievals (Table S1). All these datasets 
were resampled to the same 5-km grid as the gridded station-based 
observational data. 

2.3. Global forecast system data 

The NASA Goddard Earth Observing System (GEOS) Composition 
Forecast (GEOS-CF) provides atmospheric composition data to the 
public in near-real time (https://gmao.gsfc.nasa.gov/). GEOS-CF along 
with the GEOS-Chem chemistry module expands GEOS-Chem’s weather 
and aerosol modeling system to provide hourly atmospheric composi
tion data including O3 and PM2.5 (Keller et al., 2021). In this study, we 
used surface-level GEOS-CF data for real-time monitoring at 11:00 
(China Standard Time, CST) resampled to 5 km for the model training. 

2.4. Correlation analysis between PM2.5 and O3 

To explore the correlation between PM2.5 and O3, we assessed the 
frequency of extreme events of each day during 2014–2021 using daily 
averages of in-situ measurements. We used the likelihood multiplication 
factor (LMF) to derive the co-occurrence factor of extreme events. LMF is 
defined as the ratio of the joint probability of two extreme events and the 
probability if they are assumed to be independent, and has been widely 
used to assess the relationship in compound events (Zscheischler and 
Seneviratne, 2017). Here we defined four types of extreme events: (I) 
high O3 and high PM2.5, with O3 and PM2.5 both at or above their 
respective 80th percentile for all days; (II) high O3 and low PM2.5, with 
O3 at or above the 80th percentile and PM2.5 at or below the 20th 
percentile; (III) low O3 and low PM2.5, with O3 at or below the 20th 
percentile and PM2.5 at or above the 80th percentile; (IV) low O3 and low 
PM2.5, with O3 and PM2.5 both at or below their respective 20th 
percentile. The LMF formula is expressed as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

I : FPM2.5,O3 (x, y) = P
(
PM2.5, ≥ x,O3 ≥ y

)

II : FPM2.5,O3 (x, y) = P
(
PM2.5, ≤ x,O3 ≥ y

)

III : FPM2.5,O3 (x, y) = P
(
PM2.5, ≥ x,O3 ≤ y

)

IV : FPM2.5,O3 (x, y) = P
(
PM2.5, ≤ x,O3 ≤ y

)

(1)  

Fexp(x, y)= (1 − xth)yth (2)  

LMF=
FPM2.5,O3 (x, y)
Fexp(x, y)

(3)  

where x is the percentile in the PM2.5 data (20th or 80th percentile) and 
y is the percentile in the O3 data (20th or 80th percentile). Notably, an 
LMF equal to or below one represents no increase in the co-occurrence 
probability (i.e., the two extreme events are likely to be independent), 
whereas a larger LMF indicates an increased likelihood of compound 
events. 

3. Simultaneous Ozone and PM2.5 inversion deep neural 
network (SOPiNet) 

We developed SOPiNet to address the following deficiencies associ
ated with single modeling retrievals: (1) PM2.5 and O3 have similar 

emission sources and significant commonalities, and single task 
modeling is limited in that it cannot use shared information to improve 
the estimation accuracy; (2) when ground-based observations for PM2.5 
or O3 are missing, there are gaps in the training data for single modeling; 
and (3) variations in the air conditions of different days in the past have 
different impacts on current PM2.5 and O3, and capturing this feature at 
different time points is challenging. 

Fig. 2a shows the framework of SOPiNet, which consists of the 
following three key parts: (1) a deep neural network (DNN) to process 
satellite and other ancillary data; (2) multi-head attention to learn 
temporal relationships across different past days; and (3) joint training 
applied by integrating DNN and attention-based features for shared 
representation learning. The codes of SOPiNet and its user guide are 
freely available online at https://github.com/RegiusQuant/ESIDLM. All 
input variables for SOPiNet are shown in Table S2. The collected data 
from 2020 to 2021 were used as training data to train the model, the 
data in 2019 were used as validation data for model hyperparameter 
tuning, and the data in 2022 were used as test data to evaluate the model 
performance. 

3.1. DNN framework 

In SOPiNet, we introduce a DNN-based framework called Entity
DenseNet (Yan et al., 2020). The input data are separated into two 
groups: categorical and numerical variables. The categorical variables 
are first processed by an embedding layer and then merged with nu
merical variables as inputs to hidden layers. We constructed three hid
den layers in SOPiNet, each comprising one batch normalization layer, 
one fully connected layer, one dropout layer, and one rectified linear 
unit layer. The details of the feed-forward operation in this DNN 
framework are reported by Yan et al. (2020). 

3.2. Multi-head attention 

SOPiNet learns relationships across different past days via the multi- 
head attention mechanism. An attention function takes as input the 
query (Q), keys (K), and corresponding values (V), which are all real 
N × dmodel matrices (Vaswani et al., 2017): 

Q,K,V ∈ RN×dmodel (4)  

where Q,K and V ∈ RN×dmodel are Real Number (R) matrix with N and 
dmodel dimensions. Then the head-specific representation subspaces Qi, 
Ki, and Vi are obtained through linear projections to N × dk and N × dv 
dimensions: 
⎧
⎪⎪⎨

⎪⎪⎩

Qi = Q×WQ
i ,Qi ∈ R

N×dk

Ki = K ×WK
i ,Ki ∈ R

N×dk

Vi = V ×WV
i ,Vi ∈ R

N×dv

(5)  

where i denotes the head number, and WQ
i , WK

i , and WV
i are head- 

specific weights for Q, K, and V: 

WQ
i ∈Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv (6)  

here we set dk = dv = dmodel/I, where I is the number of heads. 
A common choice for computing the attention in headi is the scaled 

dot-product attention, which can be expressed as follows: 

headi=Attention(Qi,Ki,Vi)= softmax
(
QiKTi

/ ̅̅̅̅̅
dk

√ )
Vi (7) 

The final multi-head attention outputs are processed by a linear 
combination (WO) from all heads. 

MultiHead(Q,K,V)= concat(head1, head2,⋯headi)WO (8)  

where WO ∈ R(i⋅dv)×dmodel . Fig. 2c shows how the multi-head attention 
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works in this study, using information from the past 3 days as an 
example (in actuality we used the past 20 days). The input X (3 × 4) has 
3 rows (corresponding to the number of days) and 4 columns (one for 
each feature: PM2.5, O3, temperature and relative humidity). Then, 
through the fully connected layer process for a linear transformation, we 
obtained ×2 (3 × 8). Here, the original 4 feature information is trans
formed to 8 dimensional feature space (dmodel = 8). If the number of 
heads is 2, dk = dv = dmodel/I = 8/2 = 4; therefore, Qi, Ki, and Vi are 3 ×
4 matrices. The output from head 1 and 2 are 3 × 4 matrices, and the 
combination of the two yields a 3 × 8 matrix. Through the linear 
transformation of WO, which has 8 × 8 dimensions (i × dv = 2 × 4 = 8, 
dmodel = 8), the final output from the multi-head attention is a 3 × 8 
matrix. Evidently, the input and output matrices for multi-head atten
tion have the same dimension. This way, multi-head attention allows for 
the model to jointly assess information from the past days to learn their 
temporal relationships. In this study, we used the Autoregressive Inte
grated Moving Average (ARIMA) model to determine the number of past 
days to use as input to SOPiNet (the detailed can be found in Supple
mentary information- Optimization of the number of past days’ infor
mation for PM2.5 and O3) (Sakamoto et al., 1986; Tran and Reed, 2004; 
Aasim et al., 2019). Based on ARIMA results, we chose to use 20 days of 
information as inputs for the SOPiNet real-time O3 and PM2.5 retrievals. 

3.3. Loss function 

For effective knowledge sharing across PM2.5 and O3 retrievals, a 
new joint loss function was developed for network optimization: 

Ltotal= LPM2.5 + L03 (9) 

with 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LPM2.5 =

∑N

i=0

(
YPM2.5
truei − YPM2.5

ei ×MPM2.5
maski

)2

∑N

i=0
MPM2.5
maski

LO3 =

∑N

i=0

(
YO3
truei − Y

O3
ei ×MO3

maski

)2

∑N

i=0
MO3
maski

(10)  

where N is the number of samples, YPM2.5
truei and YO3

truei are ground-based 
measured values taken as the truth at sample i, YPM2.5

ei 
and YO3

ei 
are 

model estimated values, and MPM2.5
maski 

and MO3
maski 

are mask values for 
ground-based measured true values. If the ground-based measured value 
is missing, Mmaski = 0; otherwise Mmaski = 1. 

3.4. Spatial heterogeneity and gap-filling for cloud impact 

Because climate and administrative policies may differ significantly 
among provinces in China, PM2.5 and O3 have distinct spatial charac
teristics (Zhao et al., 2021). This study considered season, month, land 
use type (Table S3), and province (Table S4, Fig. S2) as categorical 
variables for the model to address the spatial heterogeneity issue. In 
addition, we used the Cartesian function to model the spatial-temporal 
feature interaction processes for PM2.5 and O3 in different locations 
and months: 

S×T ={(s, t)|s∈ S ∧ t∈ T} (11)  

where s is one of the elements for province S and t is a one of the ele
ments for month T. We input the pairwise feature S × T to SOPiNet to 
jointly learn the interactions between the spatial-temporal information 
with O3 and PM2.5. 

Clouds have significant impacts on satellite signals of PM2.5 and O3. 
Numerous previous studies have not performed the estimation under 
cloudy satellite pixels (Zang et al., 2021a,b; Li et al., 2022a; Luo et al., 

Fig. 2. (a) A schematic of the Simultaneous Ozone-PM2.5 inversion deep neural Network (SOPiNet) framework. (b) The architecture of multi-head attention. (c) An 
example of how information from the past three days is used for model learning through multi-head attention. Abbreviations: BN = batch normalization, FC = fully 
connected, ReLU = rectified linear unit, Concat = concatenate operation. 
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2022). To address this limitation, we first classified the satellite pixels 
into two types: cloud and non-cloud (Luo et al., 2008). Then SOPiNet 
estimated full-coverage PM2.5 and O3 concentrations by mining the 
relationship between meteorological data, GEOS-CF forecasts and 
ground-based PM2.5 and O3 under cloud and non-cloud conditions. Geng 
et al. (2021) showed that this method is robust and counteracted the 
limitations of cloudy pixels. 

4. Results 

4.1. Significant links between PM2.5 and O3 

We first assessed the association between extreme PM2.5 and O3 
events using ground-based observations from 2014 to 2021 in China. We 
used LMF to measure the increase in the co-occurrence probability of 
extreme PM2.5 and extreme O3 (above 80th percentile as extreme high 
and below 20th percentile as extreme low) compound events relative to 
the frequency if these extremes were independent. An LMF of 1 or below 
indicates no increase in the co-occurrence probability of compound 
extreme PM2.5 and O3 events. Fig. 3a–d shows that the mean LMF for 
four types of concurrent extreme O3 and PM2.5 events in four seasons 
during 2014–2021. The results indicate that the association between 
PM2.5 and O3 has strong seasonal and spatial characteristics. As shown in 

Fig. 3a and b for the winter season, the mean LMF was notably higher in 
northern China than in southern China, which shows the presence of 
both compound extreme low PM2.5 _high O3 and extreme high PM2.5 
_low O3 events in northern China in winter. Many studies have presented 
a significant negative correlation between PM2.5 and O3 in winter in 
northern China due to temperature and emissions related to household 
heating (Li et al., 2019a,b; Duan et al., 2020). Li et al. (2019a,b) showed 
that high PM2.5 concentrations in winter scavenge hydroperoxides 
(HO2) and NOx radicals needed to produce O3, leading to a decrease in 
O3. On the other hand, the winter season can also lead to an increase in 
the co-occurrence of high O3 and low PM2.5 in northern China. This 
dependence has also been observed in 12 western US cities; O3 increased 
with PM2.5 at low peaks (approximately 30–50 μg/m3) and declined at 
high PM2.5 concentration levels (Buysse et al., 2019). 

In spring and autumn, the LMF for extreme high PM2.5–low O3 in the 
Beijing-Tianjin-Hebei region is generally above 2.0, but for extreme low 
PM2.5–high O3 the LMF is always below 1 (Fig. 3e), leading to a doubling 
in the occurrence rate for high PM2.5 and low O3 events. In spring, this 
region often suffer from dust storms, which directly affect the radiative 
forcing and thus the secondary production of O3 (Forkel et al., 2012; 
Huang et al., 2014; Kok et al., 2021). In summer, Fig. 3c and d shows 
that the co-occurrence of extreme high PM2.5– high O3 is especially high. 
In this season, the enhancement of solar radiation promotes 

Fig. 3. (a)–(d) Mean LMF of four types of concurrent extreme O3 and extreme PM2.5 events in four seasons based on ground-based measurements during 2014–2021. 
The mean LMF in three mega-city regions: Beijing-Tianjin-Hebei (BTH; 37◦–41◦N, 114◦–118◦E), Yangtze River Delta (YRD; 30◦–33◦N, 118◦–122◦E) and Pearl River 
Delta (PRD; 21.5◦–24◦N, 112◦–115.5◦E). The black dotted line denotes where the LMF is 1. 
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photochemical reactions that lead to O3 generation. Then, high levels of 
atmospheric oxidants (OX = NO2 + O3) can lead to a low oxidation state, 
oxidizing organic aerosols and resulting in joint extreme high O3 and 
PM2.5 events (Duan et al., 2020). Previous studies have found that O3 
and PM2.5 are more likely to exhibit a strong positive association in 
summer, especially in coastal regions such as the Pearl River Delta and 
Yangtze River Delta, which is consistent with our findings, as shown in 
Fig. 3c–e. Our analysis reveals a strong relationship between PM2.5 and 
O3, and the compound extremes of PM2.5 and O3 events have clear 
spatial and temporal patterns in China. Therefore, jointly learning PM2.5 
and O3 information through deep learning could potentially take 
advantage of this relationship to improve the retrievals of PM2.5 and O3 
in different regions and seasons. 

4.2. Model evaluation and comparison 

To quantify the added value of the joint learning in SOPiNet, we 
predicted real-time values of PM2.5 and O3 in 2022 using SOPiNet and 
compared the results with a single modeling variant of the network that 
retrieved PM2.5 and O3 independently. Fig. 4a–d shows the predicted 

values evaluated against observations in a time-based validation 
(2020–2021 as training data, 2019 as validation data and 2022 as test 
data). For PM2.5, the results from SOPiNet are generally consistent with 
ground-based observations, with a coefficient of determination (R2) of 
72% and RMSE of 16.45 μg/m3, thus achieving an additional 6 per
centage point of variance compared to the single modeling results (R2 =

66%). 
In addition, we divided the concentrations into three intervals: 0–50, 

50–100, and 100–150 μg/m3. The result shows that SOPiNet has 
significantly higher R2 than single modeling for PM2.5 ranging from 50 
to 100 μg/m3 (SOPiNet R2 = 72%, single modeling R2 = 63%) and 
100–150 μg/m3 (SOPiNet R2 = 62%, single modeling R2 = 55%), which 
indicates that the joint learning especially improved the result for high 
PM2.5 concentrations (exceeding 50 μg/m3). For the O3 validation, 
SOPiNet yields R2 and RMSE values of 82% and 12.60 μg/m3, while 
single modeling has an R2 and RMSE of 79% and 13.87 μg/m3, respec
tively. Based on the intervals, SOPiNet has a strong advantage over 
single modeling for O3 in the 50–150 μg/m3 range, where the joint 
learning led to a 3 percentage point increase in the explained variance in 
O3. 

Fig. 4. (a–d) Validation of SOPiNet and single modeling against ground-based observations. The solid black line is the 1:1 reference line. The solid red line is the 
linear regression fitted line. The linear regression relation, coefficient of determination (R2), number of samples (N) and root-mean-square error (RMSE) are presented 
in each panel, along with the R2 and RMSE values for specific concentration intervals. (e–f) Box plots of SOPiNet estimates, single modeling estimates and in-situ 
measurements in three intervals (0–50 μg/m3, 50–100 μg/m3 and 50–150 μg/m3). (g) The stations used to test the performance of SOPiNet in regions with no 
ground-based measurements. (h–i) Validation results from (g). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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From Fig. 4a–d, it can be seen that SOPiNet has more reliable esti
mates for high levels of PM2.5 and O3 compared with the single modeling 
results. In particular, SOPiNet reduces the underestimation issue in the 
50–150 μg/m3 range for both the PM2.5 and O3 retrievals (Fig. 4e and f). 
Table S5 lists the performances of models from previous studies which 
used the time-based method for validation (Xue et al., 2019; R.Y. Liu 
et al., 2020; Wei et al., 2020; Yan et al., 2020; Chen et al., 2021; Geng 
et al., 2021; Huang et al., 2021; Yan et al., 2021; Dong et al., 2022; Luo 
et al., 2022; Wang et al., 2022). From the comparison with previous 
studies, SOPiNet exhibits certain improvements with respect to R2 and 
RMSE. 

To evaluate the performance of SOPiNet in areas where there are no 
ground-based stations to provide training data, we randomly excluded 
200 observational sites (Fig. 4g) from the training set. The validation 
results in Fig. 4h and i shows that SOPiNet still performs well in areas 
with no stations, with an R2 of 67% for PM2.5 and 76% for O3. 

In addition, compared with single PM2.5 and O3 retrievals, SOPiNet 
significantly reduced the training and inference time (see Table S6). 
SOPiNet decreased the training time by 35.5% and inference time by 
32.0% on a computer with a 3960X 24-Core CPU and an NVIDIA 
GeForce RTX 3090 GPU. 

One reason for the improved accuracy by SOPiNet is its ability to 
utilize more training samples than single modeling. As seen in Fig. 5a, 
many sites had missing data for PM2.5 when O3 measurements were 
available, and vice versa. Missing data rates exceeding 5% (PM2.5 or O3) 
were observed in 36.5% of the sites. Particularly, as shown in Fig. S4, 
certain sites can have missing data rates that exceed 20% with a 
maximum of 56.3%. Single modeling works only when there is no 
missing data in each estimation task (Fig. 5b), leading to many collected 
incomplete data not being used for model training. In contrast, SOPiNet 
can train a model despite either PM2.5 or O3 data missing, which may 
present additional samples for training data (used to train the model) 
and validation data (used for model hyperparameter tuning) compared 
to single modeling. Fig. 5c presents a comparison of the model perfor
mance under different data missing rates. The advantage of SOPiNet 
over single modeling clearly increases as the missing data rate increases. 

When the missing data rate exceeds 20%, SOPiNet yields increased R2 

values by 11.1% and 6.4% (relative change) for real-time PM2.5 and O3 
estimation, and decreased RMSE values by 12.4% and 6.9% (Fig. S5), 
respectively. 

4.3. Real-time monitoring across China in full coverage 

Fig. 6 shows daily real-time monitoring results obtained by SOPiNet 
for three conditions: heavy, moderate, and few clouds on January 26, 
May 7, and 7 March 2022, respectively. On January 26, 2022, the cloud- 
free satellite pixels covered only 20–30% of the grid cells in China. 
Under this condition, many hotspots of PM2.5 and O3 were missing 
owing to the effect of clouds. SOPiNet first classifies the pixels as cloud 
or non-cloud, then using supportive information from GEOS-CF data 
(PM2.5 and O3) and meteorological data, conducts joint learning to 
explore the implicit relationship between variables from the actual 
PM2.5 and O3 states. Consequently, the weight coefficient associated 
with the cloud and non-cloud conditions can be learned during the 
SOPiNet training, which allows the model to effectively train cloud- 
affected areas, thereby driving other variables to fill in the gaps. From 
the results on January 26, 2022, SOPiNet can accurately capture the 
heavy PM2.5 (>100 μg/m3) and slightly O3 polluted (<40 μg/m3) con
dition in the Beijing-Tianjin-Hebei region, but this is not detected 
without gap-filling for cloud impact. These improvements were 
observed under moderate and few clouds conditions, during which 
SOPiNet can comprehensively capture daily variations in PM2.5 and O3. 

Fig. S9a and c show a detailed comparison between SOPiNet real- 
time simultaneous inversion and the in-situ ground measurements. 
The temporal correlation coefficients (R) between the retrieved and 
observed concentrations are 0.91 and 0.96 for PM2.5 and O3, respec
tively. Generally, high pollution can cause large uncertainties in real- 
time monitoring. We calculated the accuracy of SOPiNet for real-time 
alerts when PM2.5 and O3 levels are dangerous to human health 
(>100 μg/m3). As presented in Figs. S9b and d, SOPiNet yields a mean 
accuracy of approximately 85.2% for high level pollution days. 
Fig. S9e–j show two cases of comparisons between SOPiNet estimates 

Fig. 5. (a) Percentages of missing in-situ ground measurements in China during 2019–2021. (b) Improvement of SOPiNet in data utilization over single modeling. (c) 
Comparison between the R2 values of different groups with missing data based on SOPiNet and single modeling. 
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and GEOS-CF forecasts. On January 5, 2022, high PM2.5 pollution was 
clearly observed in the Yangtze River Delta and northeast China. 
Although both SOPiNet and GEOS-CF captured these hotspots, GEOS-CF 
severely overestimated the PM2.5 concentration in Sichuan; the PM2.5 
concentrations from ground-based measurements and SOPiNet re
trievals were approximately 50 μg/m3, while the GEOS-CF PM2.5 fore
cast exceeded 90 μg/m3. On Apr 12, 2022, GEOS-CF underestimated 
(overestimated) O3 in the Northeast (Southwest) region of China, while 
SOPiNet accurately captured these events. 

5. Conclusion and discussion 

This study proposes a novel satellite-based inversion deep learning 
model, SOPiNet, for real-time and simultaneous PM2.5 and O3 moni
toring. First, the relation between O3 and PM2.5 was illustrated. The 
presence of both compound extreme low PM2.5–high O3 and extreme 
high PM2.5–low O3 events were found in northern China in winter. 

Additionally, the co-occurrences of both high O3–high PM2.5 and low 
O3–low PM2.5 were especially high in western China during summer. To 
better model this highly relevant relationship and improve real-time O3 
and PM2.5 monitoring, SOPiNet was designed within a two-task deep 
neural network framework, which simultaneously learns PM2.5 and O3 
retrieval tasks and shares the most relevant features of both. 

Moreover, we found that historical air conditions from the past days 
to weeks contain information relevant for the estimation of current 
PM2.5 and O3 (Fig. S7). We determined that including information about 
the air quality from the past 20 days was optimal for current real-time 
PM2.5 and O3 estimation in SOPiNet. The important features from the 
past days were captured in SOPiNet using the multi-head attention 
mechanism. As shown in Fig. 4, validation results show that SOPiNet is 
suitable for the simultaneous inversion of PM2.5 and O3, and results in an 
overall performance compared to the single-species inversion model. 
One reason for this improvement is that SOPiNet utilizes more samples 
in the training dataset when data is missing for one species but available 

Fig. 6. Daily full coverage of PM2.5 and O3 concentrations based on real-time monitoring from SOPiNet with ground-based observations (third row, fifth row) 
compared with estimates under cloud masking (second row, forth row). Three cases with different cloud conditions (heavily, moderately, and partly cloudy) 
are presented. 
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for the other species; consequently, the joint retrieval is particularly 
beneficial in cases where missing data rates are high. 

A limitation of SOPiNet that should be addressed in future studies is 
that the model cannot be trained when PM2.5 and O3 exhibit missing 
data simultaneously. Many existing research studies indicate that 
missing training samples have significant impacts on model perfor
mance (Shen et al., 2018; Samal et al., 2021; Yang et al., 2022b; Li et al., 
2022b). Therefore, comprehensive utilization of the collected data is 
challenging, and further investigation is needed to handle missing data. 
On the other hand, SOPiNet employs multi-head attention to capture 
patterns existing in time series, but the mechanism for visualizing this 
pattern has not been determined. Moreover, the same meteorological 
factors in different weather conditions could have different impacts on 
the PM2.5 and O3 retrieval. Although the potential dependence of the 
shared meteorological factors on different impacts can be captured by 
SOPiNet with shared representation learning, it is currently challenging 
to physically interpret the results. Therefore, further work is needed to 
open the deep learning black box to understand the processes that 
improve the prediction of air pollution. 
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