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Abstract. The aerosol fine-mode fraction (FMF) is valuable for discriminating natural aerosols from anthro-
pogenic ones. However, most current satellite-based FMF products are highly unreliable over land. Here, we
developed a new satellite-based global land daily FMF dataset (Phy-DL FMF) by synergizing the advantages of
physical and deep learning methods at a 1◦ spatial resolution covering the period from 2001 to 2020. The Phy-DL
FMF dataset is comparable to Aerosol Robotic Network (AERONET) measurements, based on the analysis of
361 089 data samples from 1170 AERONET sites around the world. Overall, Phy-DL FMF showed a root-mean-
square error (RMSE) of 0.136 and correlation coefficient of 0.68, and the proportion of results that fell within
the ±20 % expected error (EE) envelopes was 79.15 %. Moreover, the out-of-site validation from the Surface
Radiation Budget (SURFRAD) observations revealed that the RMSE of Phy-DL FMF is 0.144 (72.50 % of the
results fell within the ±20 % EE). Phy-DL FMF showed superior performance over alternative deep learning or
physical approaches (such as the spectral deconvolution algorithm presented in our previous studies), particularly
for forests, grasslands, croplands, and urban and barren land types. As a long-term dataset, Phy-DL FMF is able
to show an overall significant decreasing trend (at a 95 % significance level) over global land areas. Based on the
trend analysis of Phy-DL FMF for different countries, the upward trend in the FMFs was particularly strong over
India and the western USA. Overall, this study provides a new FMF dataset for global land areas that can help
improve our understanding of spatiotemporal fine-mode and coarse-mode aerosol changes. The datasets can be
downloaded from https://doi.org/10.5281/zenodo.5105617 (Yan, 2021).
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1 Introduction

Evaluating the impact of anthropogenic aerosols on climate
change and human health relies on the ability to separate the
proportion of anthropogenic aerosols from the total aerosol
loading (Anderson et al., 2005; Zheng et al., 2015; Li et al.,
2016a). Although satellite remote sensing can provide global
scale data on aerosol content that are represented by the
aerosol optical depth (AOD), accurate monitoring of anthro-
pogenic aerosols is still a major challenge. This is because a
key parameter called the aerosol fine-mode fraction (FMF),
which is used for discriminating anthropogenic aerosols from
natural ones (Bellouin et al., 2005), has been regarded as
highly unreliable according to satellite-based AOD retrievals,
especially over land (Levy et al., 2013; Yan et al., 2017;
Liang et al., 2021; Yang et al., 2020; Zang et al., 2021a).

Satellite-based FMF retrievals based on physical methods
have been performed previously; currently, five global scale
FMF products exist (Fig. 1) that exhibit different temporal
resolutions from 1 to 16 d (Levy et al., 2007; Garay et al.,
2020; C. Chen et al., 2020). Of these, Polarization and Di-
rectionality of the Earth’s Reflectances (POLDER) can per-
form multiangle and multispectral polarized measurements,
which provide unique advantages in the retrieval of aerosol
FMF (Dubovik et al., 2011, 2019). Therefore, in recent years
several POLDER-based FMF retrieval methods have been
proposed (Zhang et al., 2016, 2021), such as the general-
ized retrieval of aerosols and surface properties (Dubovik
et al., 2014). However, POLDER ended its mission in 2013,
whereas the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) has operated for about 20 years and continues
to perform well (K. Yan et al., 2021, G. Yan et al., 2021).
In addition, the Advanced Along Track Scanning Radiome-
ter (AATSR) ended the mission in 2012 (Kolmonen et al.,
2016), while the Visible Infrared Imaging Radiometer Suite
(VIIRS) started the mission in 2012, which could provide
less than 10-year global FMF products so far (Sawyer et al.,
2020). Currently, only the MODIS Dark Target (DT) method
has been used to generate global aerosol FMF products over
both land and ocean. However, the MODIS DT-derived FMF
over land is highly unreliable and is not recommended for
use even though it has evolved to the Collection 6.1 (C6.1)
level (Levy et al., 2013; C. Chen et al., 2020). To improve
the accuracy of MODIS land-based FMF retrievals, improve-
ments have been made to physical approaches, such as the
lookup table-based spectral deconvolution algorithm (LUT-
SDA, Yan et al., 2017, 2019). Using the LUT-SDA model
in previous research, we developed a 10-year global land
FMF dataset (Yan et al., 2021b) with moderately improved
retrieval accuracy (root-mean-square error, RMSE= 0.22).
Because MODIS has no multiangle and multispectral polar-
ized information, Lipponen et al. (2018) noted that MODIS-
based FMF retrievals using physical methods still suffer from
these major limitations.

In recent years, deep learning approaches have been ap-
plied to satellite-based atmospheric research (Zang et al.,
2021b; Yan et al., 2020a; Yuan et al., 2020; Shen et al.,
2018; Ong et al., 2016), including FMF retrieval (X. Chen et
al., 2020). Compared with classical machine learning meth-
ods, deep learning is more capable of approximating nonlin-
ear relationships (Yan et al., 2021c). For example, X. Chen
et al. (2020) used a convolutional neural network (CNN)
to develop a deep learning model for MODIS FMF re-
trievals called the neural network-based AEROsol retrieval
(NNAero) method. The NNAero-derived FMF is a signifi-
cant improvement over the MODIS DT-derived FMF, with
the RMSE decreasing from 0.34 (DT) to 0.1567 (NNAero).
However, this method has only been applied and validated
over northern and eastern China, and not globally. As an im-
portant limitation, Zhang et al. (2016) noted that satellite-
measured multispectral reflectance of ground-based data
alone was not sufficient to retrieve FMF with high accuracy.
O’Neill et al. (2008) showed that when the temperature is
low, the error of the fine-mode AOD calculated by the physi-
cal method, i.e., the spectral deconvolution algorithm (SDA),
is clearly large (SDA technical memo, O’Neill et al., 2008).
Although this issue has long been known, the relationship
between meteorological factors and FMF is complex and dif-
ficult to describe by equations in the SDA. Benefiting from
its powerful ability to describe nonlinear relationships, using
a deep-learning model may overcome the deficiencies of the
SDA in calculating FMF.

To address the above issues, we synergized the advantages
of the physical method and deep learning to retrieve aerosol
FMF over land on a global scale using MODIS data. We
tested and validated this hybrid model using two decades
of data (2001–2020) and produced a new long-term FMF
dataset called physical-deep learning FMF (Phy-DL FMF).
Contrary to previous studies, the proposed hybrid model
considers both physical characteristics and nonlinear rela-
tionships to constrain the FMF calculation. This long-term
dataset shows good promise for shedding light on the im-
pacts of human activities on atmospheric aerosols, providing
a foundation for understanding the variations in fine-mode
aerosols on a global scale.

2 Materials and methods

2.1 MODIS data

The MODIS sensor onboard Terra has provided long-term
observations on a global scale every day since February 2000
(Levy et al., 2010), available at the Atmosphere Archive &
Distribution System Distributed Active Archive Center. In
this study, MODIS C6.1 L1B MOD02SSH data (i.e., top of
the atmosphere (TOA) reflectances from Band 1 to Band 7),
MODIS C6.1 L3 MOD09CMG data (surface reflectances
from Band 1 to Band 7), and MODIS C6.1 L3 MOD08 daily
data were obtained from 2001 to 2020 for retrieving FMF.
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Figure 1. Overview of the time periods covered by different satellites that provide global scale FMF products. AATSR Advanced Along-Track
Scanning Radiometer; MISR Multiangle Imaging Spectroradiometer; MODIS Moderate Resolution Imaging Spectroradiometer; POLDER
Polarization and Directionality of the Earth’s Reflectances; VIIRS Visible Infrared Imaging Radiometer Suite.

Supplement Table S1 summarizes details about the MODIS
data used in this study.

2.2 AERONET data

The AERONET is a worldwide, sun–sky photometer net-
work providing ground-level aerosol properties, recently up-
dated to Version 3 (Holben et al., 1998). To retrieve FMF
from AERONET solar extinction data, O’Neill et al. (2001a,
2001b, 2003) developed the SDA method. The FMFs based
on this inversion method (i.e., SDA FMF) have been included
in the standard AERONET data with an estimated uncer-
tainty of 0.1 (O’Neill et al., 2001b, 2003). Since there are not
enough level 2.0 data for use as training data for modeling
purposes, here, we used the level 1.5 SDA FMF dataset gen-
erated from data from 1170 global AERONET sites covering
the period of 2001 to 2020 as the ground truth for further
modeling and validation (Fig. S1a in the Supplement). These
AERONET sites are spread around the world, enabling the
construction of a universal model and allowing a more thor-
ough validation of the new FMF product.

2.3 Meteorological data

Previous studies have reported that meteorological variables
are significantly correlated to fine-mode and coarse-mode
aerosols. Tai et al. (2010), Liang et al. (2016), and Shen
et al. (2018) all revealed that meteorological variables like
temperature, relative humidity (RH), and wind speed explain
much of the variations in PM2.5 concentrations (> 50 %). Xi-
ang et al. (2019) and Gui et al. (2019) found a negative asso-
ciation between planetary boundary layer height (PBLH) and
PM2.5, and Kang et al. (2014) found that fine-mode aerosols

and air pressure were significantly correlated. In this study,
to investigate the correlation between meteorological vari-
ables and the FMF, we implemented the generalized addi-
tive model (GAM). Figure S2 reveals that the meteorological
variables considered in this study, i.e., PBLH, temperature,
surface pressure, RH, and wind speed, all had significant
nonlinear relationships with the FMF (at the 99 % signifi-
cance level). Both PBLH and surface pressure had similar in-
fluences on the FMF, i.e., a positive (negative) response when
PBLH and surface pressure values were low (high). This is
because high PBLH and surface pressure values can increase
the diffusion of fine particles, decreasing the magnitude of
the FMF (Tai et al., 2010). Meanwhile, the negative response
of the FMF to wind speed also reflects the influence of fine
particle diffusion as well as the contribution of dust particles
strengthened by wind speed (Luo et al., 2016). Increasing
temperatures corresponded to decreasing FMFs, partly due
to unfavorable diffusion conditions (Tai et al., 2010). On the
other hand, more fine particles are released by heating dur-
ing colder seasons than during warmer seasons (Ramachan-
dran, 2007). The RH had a strong positive influence on PM2.5
concentrations when RH was between 25 % and 75 %. This
reflects the secondary particle formation boosted by the in-
creasing RH that contributed to the fine particles (Tai et al.,
2010). Therefore, in this study, we used surface temperature,
air pressure, PBLH, RH, and wind speed as inputs to the
deep-learning model.

Due to the impact of meteorological factors on FMF, five
meteorological variables (i.e., 2 m air temperature, PBLH,
surface pressure, 10 m U/V wind components, and 2 m dew
point temperature) were obtained from the fifth generation
product produced by the European Centre for Medium Range
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Weather Forecasts (ERA5), with hourly data available since
1950 and at a 0.25◦ spatial resolution (Fig. S1b–f). The RH
was then calculated by 2 m dew point temperature and air
temperature (Tetens, 1930). Given the overpass time and spa-
tial resolution of MODIS data, only monitoring time meteo-
rological data collected from 10:00 to 11:00 local time were
used and resampled to 1◦× 1◦ to obtain daily averages.

2.4 Combining physical and deep-learning models
(Phy-DL) for retrieving FMF

In this study, we used a concatenation mode to combine a
physical model and a deep-learning model, i.e., the outputs
of the physical model were used as the inputs for the deep-
learning model (Fig. 3). The physical model used was the
LUT-SDA (Yan et al., 2017). The LUT-SDA is designed
for satellite FMF retrievals when only AODs at two wave-
lengths are available (such as DT AOD products). As shown
in Eq. (1) of the SDA (O’Neill et al., 2001a), a minimum of
AODs at three wavelengths are needed to first obtain the AE
derivative (α′). The AE of the fine-mode AOD (αf) and the
FMF can then be calculated.
αf =

1
2(1−a) {(α−αc −

α′−α′c
α−αc

+ b∗)

+[(α−αc −
α′−α′c
α−αc

+ b∗)2
+ 4c∗(1− a)]1/2}+αc

FMF= α−αc
αf−αc

, (1)

where a, b∗, c∗, α′c, and αc are fixed parameters described in
Sect. 1 of the Supplementary Information document, based
on O’Neill (2010). Since AODs at two wavelengths are not
sufficient to calculate α′, for the global physically based FMF
retrieval, we first divide the whole world into nine regions (as
done by Sayer et al., 2014) and use historical AERONET ob-
servational data to determine α′value ranges in these regions.
The α′ range of values is based on the first and third quartiles
of AERONET measurements in different seasons. For exam-
ple, in Southeast Asia, α′ ranges from 0.12 to 0.60 in spring
(Yan et al., 2021b). In these nine regions, a set of hypothet-
ical values for α′ (as determined by Yan et al., 2021b),αf,
and AE (α) are imported into the SDA (Eq. 1) to build the
relationship with FMF (Fig. 2).

Different LUTs based on the SDA for these regions are
thus created. Based on the constructed LUT, initial results
are obtained using a cost function:

(FMF1,α′
1
,α1

f )=min[(LUT-SDAAE−MODISAE)]2, (2)

where FMF1, α′1, and α1
f are uncorrected initial results of

FMF, α′, and αf by the LUT-SDA, LUT −SDAAE is the α in
the LUT, and MODISAE is the MODIS MOD08 DT-based
AE. After performing the α′bias error correction (described
in Supplement, Sect. 2, O’Neill et al., 2003) and the mean
of extreme (MOE) modification (described in Supplement,
Sect. 3, O’Neill et al., 2008), the final FMF output is:

FMFoutput =
α−αc

α1
f corrected−αc

. (3)

Figure 2. Visual representation of SDA-based FMF retrieval LUT.

The deep-learning model used in this study is called Enti-
tyDenseNet (Yan et al., 2020). The EntityDenseNet incor-
porates the Entity Embeddings method (Guo and Berkhahn,
2016) that can directly process spatial or time-based features,
such as location, season, and month. It includes one input
layer, two hidden layers, and one output layer. Each hidden
layer has one fully connected layer, one rectified linear unit
(ReLU) layer, one batch normalization (BN) layer, and one
dropout layer. The feed-forward operation of each hidden
layer can be written as

an+1
= BN{f [W n+1D(an)+ bn+1

]}, (4)

where n is the layer number, an is the output vector from
layer n, D() is the dropout layer for the thinning vector
an,W n+1 and bn+1 are weights and biases, respectively, at
layer n+1, f [] is the ReLU activation function, and BN is
the batch normalization function.

In this study, we combine Phy-based FMF into Entity-
DenseNet along with satellite measurements and meteoro-
logical data to reduce FMF retrieval biases (Fig. S3). As
shown by Yan et al. (2021b), the global land Phy-based FMF
is still not reliable enough and there is room for improve-
ment. Due to its unknown and known error sources (e.g.,
MODIS-derived AE) and nonlinearity in the data itself, a lin-
ear model may not be able to correct these errors. In addition,
current physical retrieval methods do not use all the informa-
tion provided by satellite observations pertaining to aerosol
size information retrieval (Zang et al., 2021b). Lipponen et
al. (2018) showed that applying a machine-learning model
to satellite TOA reflectance and geometry data can signifi-
cantly improve the retrieval accuracy of aerosol size. Other
studies have also suggested that surface reflectance and me-
teorological factors can also impact the FMF retrieval ac-
curacy (Yan et al., 2021a; X. Chen et al., 2020). Thus, be-
sides Phy-based FMF, we input MODIS TOA reflectance
data, geometry data, surface reflectance, and meteorological
data into EntityDenseNet for the final Phy-DL FMF calcula-
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tion (Table S1). In the deep learning model training process,
70 %, 20 %, and 10 % of all input data are randomly sepa-
rated into groups of data for training, validation, and test-
ing, respectively. The validation data are used for the hyper-
parameter optimization (node numbers and dropout rate in
each hidden layer) of the deep-learning model. The testing
data are used to evaluate the performance of the trained deep-
learning model. When the trained model is finally optimized
by the validation and testing data, we apply this trained deep-
learning model to reconstruct global land FMF for the period
of 2001 to 2020.

2.5 In situ observations for independent validation

The National Oceanic and Atmospheric Administration Sur-
face Radiation Budget (SURFRAD) network provides long-
term, multiband AOD observations at a temporal resolu-
tion of 3min (Augustine et al., 2000). Multifilter Rotating
Shadowband Radiometer (MFRSR) provides spectral solar
measurements at SURFRAD sites with approximately 10 nm
wide and the peak nominally at 415, 500, 614, 670, 870,
and 940 nm (Harrison et al., 1994). In this study, we se-
lected four SURFRAD sites (Table S2) which are distant
to AERONET sites and applied the SDA method to calcu-
late the FMF (SURFRAD FMF) for validation purposes. Be-
cause SURFRAD FMF was not included in modeling train-
ing, these data are suitable as the independent validation for
FMF products.

2.6 Other global FMF products for comparison

The Phy-DL-derived FMFs were compared with the follow-
ing FMF products from three other satellite missions (Ta-
ble S3):

a. POLDER/GRASP FMF:

Launched in December 2004, POLDER-3 onboard the
Polarization and Anisotropy of Reflectances for At-
mospheric Sciences coupled with Observations from
a Lidar satellite was operational from March 2005 to
October 2013, making multi-angular polarization mea-
surements. By capitalizing on the small and fairly
neutral polarized reflectances (Deuze et al., 2001),
POLDER/GRASP is able to provide the fine-mode
AOD (fAOD, radius< 0.35 µm) in two categories: high-
precision and models. Because high-precision fAODs
perform better than models fAODs (Wei et al., 2020),
we used monthly high-precision POLDER/GRASP
fAODs and AODs (both at 490 nm) at a spatial
resolution of 1◦ for calculating FMF (at 490 nm)
(FMF= fAOD/AOD).

b. Multi-angle Imaging SpectroRadiometer (MISR) FMF:

The MISR instrument onboard the National Aeronau-
tics and Space Administration Earth Observing Sys-
tem Terra satellite has been continuously working since

2000 (Diner et al., 1998; Kahn and Gaitley, 2015).
The MISR has nine push-broom cameras with dif-
ferent nominal viewing angles, allowing it to distin-
guish aerosol types, including aerosol size (Garay et
al., 2020). The MISR algorithm retrieves small-mode
AODs (at 550 nm) due to aerosol particles with radii less
than 0.35 µm at a spatial resolution of 0.5◦. We used it to
calculate FMF as the ratio of fAOD and AOD for further
comparisons in this study.

c. MODIS FMF:

The latest C6.1 MODIS aerosol product (Levy et al.,
2013) no longer includes global scale FMF, so we used
FMF at 550 nm from the previous collection (C5) for
comparison purposes (Levy et al., 2007). Although this
MODIS FMF product is not reliable over land (Levy
et al., 2010), it was used in numerous previous stud-
ies (Ramachandran, 2007; Vinoj et al., 2014) including
for PM2.5 estimations (Li et al., 2016b; Zhang and Li,
2015).

3 Results

3.1 Phy-DL FMF validation

Figure 4 shows the validation of the Phy-DL FMF against
AERONET FMF. By matching 20 years of estimated Phy-
DL FMF with AERONET FMF (number of match-ups,
N = 361 089), we first evaluated the overall performance of
Phy-DL FMF (Fig. 4a). The correlation coefficient (R) was
0.68, and the RMSE was 0.136. Approximately 90 % and
79 % of retrievals fell within the expected error (EE) en-
velopes of ±40 % and ±20 %, respectively (these envelopes
have been adopted from X. Chen et al., 2020). Figure 4b
shows the biases of the Phy-DL FMF (estimated FMF minus
AERONET FMF) as a function of the AERONET FMF. The
Phy-DL FMF slightly underestimated the FMF, with a nega-
tive median bias in each FMF bin. As each FMF increased a
higher percentage of retrievals fell within the ±20 % EE en-
velope, ranging from 42.85 % (when FMF< 0.3) to 91.17 %
(when FMF> 0.8). This indicates that the Phy-DL FMF re-
trieval performed better when the fine-mode aerosols domi-
nated. Figure 4c shows the validations of Phy-DL FMF over
different AERONET sites around the world. Most sites in the
eastern USA and Europe have over 70 % of Phy-DL FMF
falling within the EE envelope of ±20 %. Over 90 % of Phy-
DL FMF fell within the ±20 % EE envelope at some sites
in the Amazon Basin, southern Africa, and Southeast Asia.
However, at coastal AERONET sites in the Caribbean and
Mediterranean regions, Australia, and South America, less
than 60 % of Phy-DL FMF fell within the ±20 % EE enve-
lope. A similar result was found for some AERONET sites
near deserts in southern South America, Central Asia, North-
west China, and Central Australia.
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Figure 3. Technical flowchart for the production of the global land FMF product. The satellite true-color image composites of data from
three wavelengths measured by the MODIS (a red band, a green band, and a blue band data from MODIS C6.1 L1B MOD02SSH).

To further investigate the bias in Phy-DL FMF, Fig. S4a
shows that more than 75 % of the sites located on barren
land have low percentages of Phy-DL FMF (< 60 %) falling
within the EE envelope of ±20 %. About 4 % of the sites
have high percentages of Phy-DL FMF (> 90 %) falling
within the ±20 % EE envelope. This suggests that the accu-
racy of Phy-DL FMF over barren land is much lower than
over other land types. The AODs over the bright surface
used for the Phy-DL FMF retrieval were significantly over-
estimated, with the worst performance compared to other
vegetated land cover types (Levy et al., 2010; Petrenko and
Ichoku, 2013). This suggests that the performance of the
Phy-DL FMF algorithm is poor when applied to regions with
barren land. Figure S4b shows the bias of the Phy-DL FMF
and the percentage of retrievals falling within the EE enve-
lope of ±20 % as a function of the normalized difference
vegetation index (NDVI). As NDVI increased from < 0.1
to > 0.8, the percentage of FMF retrievals falling within the
±20 % EE envelope also rose from < 70 % to > 85 %, and
the range of bias decreased significantly. The core of the
SDA method relies on AE as input (Yan et al., 2017). The
AE from the MODIS DT aerosol product is still highly un-
certain. The low accuracy of AE can significantly influence

the performance of the Phy-DL FMF algorithm. As shown in
Fig. S5, AEs from the MODIS MOD08 product used as in-
put to the Phy-DL FMF algorithm performed the worst over
barren land, with the highest RMSE (> 1) and the lowest per-
centage of retrievals falling within the EE envelope of ±0.45
(< 45 %). This would result in a lower performance of the
Phy-DL FMF algorithm when applied to regions with barren
land.

Four sites from the SURFRAD network were selected for
the independent validation of the Phy-DL FMF algorithm. As
shown in Fig. 5a, the four sites (black triangles) are located
across the USA, covering different land types from forested
land to barren land. Figure 5b shows how SURFRAD and
Phy-DL FMF compare. The R was 0.51, and the RMSE was
0.144, somewhat different than AERONET validation results
(i.e., R = 0.68 and RMSE= 0.136). Furthermore, the Phy-
DL FMF performance was validated at each SURFRAD site.
Fig. 5c shows the bias of Phy-DL FMF (Phy-DL FMF mi-
nus SURFRAD FMF), percentage of retrievals falling within
the ±20 % EE envelope, and RMSEs at each site. In general,
most of the sites have a mean bias and an RMSE lower than
0.1 and 0.15, respectively, with over 70 % of the retrievals
falling within the ±20 % EE envelope. The out-of-site val-
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Figure 4. (a) Phy-DL FMF at 500 nm as a function of AERONET FMF. The solid black and red lines are the 1 : 1 line and the best-fit line
obtained from linear regression, respectively. The dashed and dotted black lines represent the expected error (EE) envelopes of ±20 % and
±40 %, respectively. (b) Box plots of the FMF bias (estimated FMF minus AERONET FMF) as a function of AERONET FMF. The dashed
horizontal black line indicates the zero bias. The red dot in each box represents the mean value of the FMF bias. The upper, middle, and
lower horizontal lines in each box show the 75th, median, and 25th percentiles, respectively. The blue dots connected by the dashed curve
are percentages of FMF retrievals falling within the EE envelope of ±20 %. (c) Global distribution of percentages of Phy-DL FMFs falling
within the EE envelope of ±20 % at the AERONET sites.

idation reveals that the Phy-DL FMF algorithm is reliable
even in regions without AERONET sites for model training.

Figure S6 shows the frequencies of three FMF levels (low:
FMF < 0.5, medium: 0.5<FMF < 0.8, high: FMF> 0.8,
Supplementary section S4) based on Phy-DL and AERONET
FMF data from 2001 to 2020. Over 60 % of AERONET-
derived FMFs were low over Central Asia, Central Aus-
tralia, and sub-Saharan Africa; the AOD of these locations
was dominated by coarse-mode aerosols (dust). The Phy-DL-
estimated FMFs were also low over Central Asia and the

sub-Sahara, but slightly underestimated over Central Aus-
tralia (frequency< 40 %). Over 90 % of both AERONET and
Phy-DL FMFs were at the medium level in South Amer-
ica, western Africa, Australia, western Asia, and the western
USA. Approximately 45 %–55 % of Phy-DL and AERONET
FMFs were at the medium level in the eastern USA, Europe,
and Central Africa. Over 60 % of Phy-DL and AERONET
FMFs were at a high level in northern India, Southeast Asia,
and Southeast China.
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Figure 5. (a) The locations of AERONET sites (green points) and four independent SURFRAD sites (black triangles) for the independent
validation of the Phy-DL FMF algorithm. The base map shows the land types from MODIS MCD12C1 data (the International Geosphere-
Biosphere Programme scheme, Table S4). (b) Phy-DL FMF at 500 nm as a function of SURFRAD FMF. The solid black and red lines are
the 1 : 1 line and the best-fit line obtained from linear regression, respectively. The dashed and dotted black lines represent the expected
error (EE) envelopes of ±20 % and ±40 %, respectively. (c) Boxplots of bias (Phy-DL FMF minus SURFRAD FMF), percentage of FMF
estimates falling within the EE envelope of ±20 % (dashed-dotted lines), and RMSEs at the four independent SURFRAD sites. The upper,
middle, and lower lines in each box present the 75th, median, and 25th percentiles, respectively. The red point in each box represents the
mean value of the FMF bias. DRA = Desert Rock, FPK = Fort Peck, GWN = Goodwin Creek, PSU = Penn State.

3.2 Global distribution of FMF over land and trends from
2001 to 2020

Figure 6a shows the global distribution of mean Phy-DL
FMF over land from 2001 to 2020. A high proportion of
fine-mode aerosols with FMF greater than 0.77 can be seen
in populated regions, including southern China, Southeast
Asia, eastern Europe, and the eastern USA. Low FMF val-
ues (< 0.55) were observed in Australia, Northwest China,
Central Asia, the Saharan region, southern South America,
and the southeastern USA, where coarse-mode aerosols from
large deserts dominate. Figure 6b shows the spatial distri-
butions of the Phy-DL and AERONET FMFs linear trends

from 2001 to 2020. In general, both datasets show decreas-
ing trends (i.e., <−3×10−3 yr−1) in Northeast China, Cen-
tral Asia, Europe, the Saharan region, southern Africa, South
America, Mexico, and the eastern USA. In contrast, South-
east Asia, India, Central Australia, Central Africa, and the
western USA show significant increasing trends of over 3×
10−3 yr−1. The increasing FMF trend over Central Australia
is sporadic and could be related to an increase in fire activity
(Andela et al., 2017). In South America and Africa the long-
term decrease in burning during the past two decades (Andela
et al., 2017; Deeter et al., 2018) has contributed to a signif-
icant decrease in FMF. However, the reduced biomass burn-
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ing in Central Africa is also partially offset by the dramatic
growth in anthropogenic emissions (Zheng et al., 2019),
leading to a slightly increasing trend in FMF (3× 10−3 to
7× 10−3 yr−1). The decreasing FMF trends in Europe and
the eastern USA are driven by reduced anthropogenic emis-
sions from transportation sources (Crippa et al., 2016; Jiang
et al., 2018). The decreasing FMF trend in Northeast China
is likely to be associated with a decrease in industrial and
residential emissions due to the implementation of clean air
policies (van der Werf et al., 2017; Yang et al., 2018; Zheng
et al., 2019). In the western USA, the dramatically increas-
ing FMF trend is likely partly attributed to the increase in
smoke from wildfires (Parks and Abatzoglou, 2020; O’Dell
et al., 2019; Zhang et al., 2020). In India, the significant in-
crease in FMF likely reflects an increase in vehicular anthro-
pogenic emissions and crop residue burning (Jethva et al.,
2019; Manoj et al., 2019). Figure 6c shows the time series
of the global monthly mean Phy-DL and AERONET FMFs
from 2001 to 2020. Both time series show similar annual cy-
cles and decreasing trends (i.e., negative slopes). However,
only the Phy-DL-estimated FMF decreasing trend was sig-
nificant (−1.9× 10−3 yr−1 at 95 % significance level). This
is because the Phy-DL dataset has greater spatial coverage
than that of the point-scale AERONET dataset.

Figure 7 shows the global distributions of seasonal Phy-
DL-estimated FMFs from 2001 to 2020. In Central Africa,
spring had the lowest FMF, especially in northern Central
Africa, due to the transportation of dust (Huebert et al.,
2003). Meanwhile, FMFs in summer and autumn were higher
than those during winter. This is partly attributed to the high
temperature and humidity conditions conducive to the forma-
tion of fine-mode aerosols (Tan et al., 2015).

In India, FMFs were noticeably higher in autumn and
winter, especially in northern India (i.e., the Indo-Gangetic
Plain), where the FMF was greater than 0.87. During spring
and summer, FMFs were usually less than 0.63 over India.
Mhawish et al. (2021) also reported the same seasonal pat-
tern. This is likely related to spring in India being the pre-
monsoon season when dust particles from nearby deserts are
frequently transported to the country (Gautam et al., 2009).
During that season, the dominant coarse-mode aerosols de-
crease from west to east over the Indo-Gangetic Plain (Kala-
pureddy and Devara, 2008), thereby leading to lower FMF,
particularly in the western Indo-Gangetic Plain. In the post-
monsoon seasons (autumn and winter), the higher FMF is
attributed to the low boundary layer and non-convective at-
mosphere, which induces haze and stagnant conditions. Fre-
quent biomass burning events also occur during these seasons
(Ramachandran, 2007), which contributes to higher FMFs.

In Central Africa and the Amazon Basin, FMFs in summer
and autumn were higher than those in spring and winter (sea-
sons here correspond to the seasons in the Northern Hemi-
sphere). This coincides with local biomass burning, which
mainly occurs from early summer to the middle of autumn
(Generoso et al., 2003; Perez-Ramirez et al., 2017). Accord-

ingly, fine-mode aerosols including black carbon and organic
carbon can contribute to higher FMFs in summer and au-
tumn. Although Australia had low FMFs (< 0.6) in all sea-
sons, some sporadic pixels in autumn had FMFs near 0.7,
which may also be related to the frequent wildfires in autumn
(Shi et al., 2021; Liu et al., 2021).

In the eastern USA, FMFs were the highest in summer;
however, in the western USA, FMFs were the highest in win-
ter. Across the entire USA, FMFs were lowest in spring. In
the eastern USA, it is thought that accelerated photochemi-
cal reactions and stagnant conditions in summer produce the
highest amount of ammonium sulfate in all seasons (Tai et
al., 2010). Moreover, ammonium nitrate is the main compo-
nent of fine-mode particles in the western USA whose con-
tent peaks in winter (Hand et al., 2012). This explains why
FMF maxima occur in different seasons on both sides of the
country.

In eastern China, summer and autumn had higher FMFs
(> 0.8) than those in spring and winter (< 0.78). This is prob-
ably because warm seasons with relatively high humidity and
temperature can enhance the generation of secondary fine
particles by gas-to-particle conversions (Tan et al., 2015).
In addition, springtime dust transportation in northeastern
China results in increasing coarse dust particles, thereby af-
fecting the FMF (Huebert et al., 2003). In contrast, southeast-
ern Asia had exceedingly higher FMFs in winter and spring
(> 0.86) than those in summer and autumn (< 0.8), owing to
the intense biomass burning from January to April (Yin et al.,
2019).

3.3 Comparison between Phy-DL, DL-based, and
Phy-based FMFs

To analyze the differences in FMFs obtained by different
methods, FMFs generated by the Phy-DL method, the deep-
learning (DL) method (meaning no Phy-based FMF as in-
put), and the Phy-based method (i.e., the LUT-SDA) from
2008 to 2017 were compared using AERONET FMF as the
ground truth. Figure 8a shows the three types of FMF es-
timates that were averaged into 20 bins with AERONET
measurements AOD> 0.2 based on the method in Levy et
al. (2007). Compared with the Phy-based FMF, the DL-based
FMF has a better estimation for low FMF (< 0.6), showing
the overall improvement in R from 0.51 to 0.60. However,
there is still a significant underestimation for DL-based FMF
when AERONET FMF is greater than 0.6. The Phy-DL FMF
ameliorated the retrievals by reducing both the underestima-
tion for high FMF values and overestimation for low FMF
values, with the highest R (0.81) among the three FMFs. The
regression equation of Phy-DL FMF also improved tremen-
dously, with smaller intercept and slope closer to 1.

Figure 8b and c compare the accuracy between Phy-DL,
Phy-based, and DL-based FMFs over five land types (forests,
grasslands, croplands, urban, and barren). The five land types
were selected based on MODIS MCD12C1 data from the In-
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Figure 6. (a) Global distribution of Phy-DL FMF mean values over the 2001–2020 period. Only those pixels with over 120 retrievals
per year were considered. (b) Global distribution of Phy-DL FMF linear trends from 2001 to 2020. Only those pixels with trends at the
95 % significance level were considered. The red and blue dots represent AERONET stations with increasing and decreasing linear trends,
respectively, at the 95 % significance level. (c) Global monthly mean Phy-DL FMF (red line) and AERONET FMF (blue line). The shaded
areas around each line represent the monthly mean FMF value ±0.1× the monthly standard deviation. The double-asterisks “∗∗” indicate
that the linear trend was at the 95 % significance level.

ternational Geosphere-Biosphere Programme scheme. Fig-
ure 8b shows that Phy-DL FMF had the lowest bias with
mean values close to 0, smallest range of bias, and highest
FMF retrievals (within ±20 % EE) over all land types. Al-
though DL-based FMF had a slightly smaller range of bias
and higher FMF retrievals (within ±20 % EE) than those
of Phy-based FMF over forests, croplands, and urban land
types, DL-based FMF still had the largest mean bias and

showed the worst performance over barren land types. In
addition, the DL-based FMF had the highest RMSE among
all the FMFs for all land types. Figure 8b shows that Phy-
DL, Phy-based, and DL-based FMFs all had the best per-
formance over forests, with RMSE values of 0.120, 0.211,
and 0.223, respectively (Fig. 8c). Likewise, all performed
the worst over barren land, showing a significant negative
bias, with less than 50 % of the FMF retrievals falling within
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Figure 7. Phy-DL-estimated FMF seasonal mean values from 2001
to 2020. The seasons are defined as spring (March, April, and May),
summer (June, July, and August), autumn (September, October, and
November), and winter (December, January, and February) for both
the Northern Hemisphere and Southern Hemisphere. Only those
pixels with 120 retrievals per year were considered when calculat-
ing the mean values.

the ±20 % EE envelope. Overall, Phy-DL-estimated FMFs
showed a significant improvement over the Phy-based and
DL-based FMFs, especially over forests, croplands, and ur-
ban land types, where the RMSEs and biases were noticeably
reduced.

For further evaluation, Phy-based, DL-based and Phy-
DL FMF were validated against AERONET FMF over
AERONET sites to show their spatial performance (Fig. S7).
The DL-based FMFs have generally the highest RMSE, with
93.2 % of sites having RMSE greater than 0.11, compared
to 81.0 % sites for Phy-based FMF and only 34.8 % sites for
Phy-DL FMF. Especially, in Australia, India, southern South
America, the Mediterranean region and North America, DL-
based FMFs have RMSE predominantly exceeding 0.23 but

the RMSE of Phy-based FMF range from 0.11–0.23 and Phy-
DL FMFs are lower than 0.17. The Phy-DL FMF performed
well in eastern Asia, southern Africa, Europe and eastern
USA, with RMSE typically lower than 0.11. In contrast, Phy-
based FMF in these regions has RMSE greater than 0.11, and
DL-based FMF even has large numbers of sites with RMSE
over 0.23. With respect to R, 69 % sites of Phy-DL FMF
have R over 0.6, but only 21 % sites of Phy-based FMF and
11 % sites of DL-based FMF reach R over 0.6. According to
Fig. S7b, d and f, although DL-based FMF has fewer sites
with R less than 0.1 in Europe and North America than Phy-
based FMF, there are limited sites for both FMFs in eastern
China, India, southeastern Asia, the Saharan region and east-
ern USA having high R (> 0.6). However, most of sites for
Phy-DL FMF achieve this high R.

Figure 9 compares the annual mean FMF from 2008–
2017 based on Phy-based, DL-based and Phy-DL FMF es-
timations. In general, high FMFs (> 0.7) were well captured
by both estimation methods over eastern China, Southeast
Asia, Europe, southern Africa, the eastern USA, and Mex-
ico. However, compared to DL-based and Phy-DL FMF, Phy-
based FMF tends to underestimate the hotspots of FMF, such
as eastern China and Central Africa. While in some regions
with comparatively low FMF (< 0.55), the estimations also
show large differences. For example, in Northeast Australia
and southern South America, Phy-DL and AERONET FMFs
agreed well with values less than 0.55, but Phy-based FMFs
were clearly overestimated by ∼ 0.1. In addition, in regions
dominated by coarse-mode aerosols such as the Saharan re-
gion and Central Asia, only Phy-DL FMF captured this low
FMF (< 0.45), while Phy-based FMF showed overestima-
tion by ∼ 0.1. DL-based FMF also captured the low FMF in
Central Asia, yet overestimated the FMF in the Saharan re-
gion. In Central Africa, FMF value is relatively high (> 0.7)
according to AERONET. The Phy-DL and DL-based FMF
captured this high value yet Phy-based FMF is greatly un-
derestimated, with FMF less than 0.7. In Australia, only Phy-
DL FMF agreed well with AERONET FMF values less than
0.6, while both DL-based and Phy-based FMF showed severe
overestimations with FMF values reaching over 0.65.

3.4 Comparison with other satellite-based FMF
products

Figure 10a–d shows the performance of Phy-DL, POLDER,
MISR, and MODIS FMFs against AERONET FMFs. Be-
cause these three satellite FMF products cover different time
ranges, we only compared retrievals made during the over-
lapping period from 2008 to 2013 when all products were
available. The Phy-DL FMF performed the best, with R

and RMSE values of 0.78 and 0.100, respectively. In ad-
dition, 96.31 % (84.74 %) of Phy-DL FMF fell within the
EE envelope of ±40 % (±20 %), an improvement over other
FMF products. The next best performing FMFs were from
POLDER and MISR, where POLDER shows R and RMSE
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Figure 8. Phy-DL (red), Phy-based (blue), and DL-based FMF (green) estimation compared with AERONET FMFs for AOD> 0.2 (at
500 nm, using data from 2008 to 2017). (a) The dots and the error bars indicate the means and standard deviations of the FMF estimates in 20
bins of AERONET FMF. The solid blue and red lines are the best-fit lines from linear regression. The dashed black line represents the 1 : 1
line. Linear regression relations and correlation coefficients (R) are given. (b) Boxplots of bias (estimated FMF minus AERONET FMF) and
percentage of FMF estimates falling within the EE envelope of ±20 % (dotted, dashed lines) as a function of land type. The upper, middle,
and lower lines in each box presents the 75th, median, and 25th percentiles, respectively. The diamond in each box represents the mean value
of the FMF bias. (c) The RMSE for each land type against that of the AERONET FMF.

values of 0.48 and 0.233, respectively, and 76.05 % (46.99 %)
of the retrievals falling within the EE envelope of ±40 %
(±20 %), while MISR FMF has R and RMSE of 0.42 and
0.204, respectively and 85.01 % (45.85 %) retrievals between
the EE envelop of ±40 % (±20 %). Both POLDER and
MISR FMFs were underestimated compared to AERONET
FMF, especially when the AERONET FMF was greater than
0.6. In contrast, MODIS FMF was overestimated compared
to AERONET FMF, especially for AERONET FMF greater
than 0.6, where MODIS FMF reached values near 1. The
overall performance of MODIS FMF was also the worst,
with R and RMSE values of 0.37 and 0.282, respectively,
and 68.88 % (44.48 %) of the retrievals falling within the EE
envelope of ±40 % (±20 %). Figure 10e shows the prob-
ability density functions (PDFs) of the FMF biases (esti-
mated FMF minus AERONET FMF). The Phy-DL PDF re-
veals that most of the biases were close to zero, suggest-
ing the robustness of the Phy-DL method. The MISR and
POLDER PDFs showed underestimations, with most of the
biases near −0.2 and −0.1, respectively. The MODIS PDF
showed overestimations with biases concentrated near 0.05.
Overall, compared with AERONET FMF, of the four FMF
products, the Phy-DL-estimated FMF agreed the best. Fig-
ure S8 shows the global distributions of RMSE from val-
idations of Phy-DL, POLDER, MISR, and MODIS FMFs
against AERONET FMFs at the AERONET sites. Concern-
ing MISR FMF, 47.9 % of the sites had RMSEs higher than
0.23, and 5.3 % of the sites had RMSEs lower than 0.11,
showing the worst performance. Concerning POLDER FMF,
29.7 % of the sites had RMSEs higher than 0.23, mainly in

the USA, the Amazon Basin, southern Africa, western Eu-
rope, and Southeast Asia. The MODIS FMF performed well
in eastern China, India, Europe, and the eastern USA, with
40.0 % of the sites having RMSEs lower than 0.11. In com-
parison, the Phy-DL FMF had RMSEs lower than 0.11 for
65.2 % of the sites. In addition, the number of match-ups
of Phy-DL-estimated and AERONET FMF was the highest
(N = 566), indicating a higher data coverage compared with
the other FMF products. In terms of R (Fig. S9), at 82.2 %
of the AERONET sites, R for MISR FMF was less than 0.2
(Fig. S9c). At 33.8 % of the AERONET sites, mainly in east-
ern China, India, and Australia, R for MODIS FMF was
greater than 0.5, but at most sites in the USA and Europe,
R was less than 0.2 (Fig. S9d). At 39.7 % of the AERONET
sites, R for POLDER FMF was greater than 0.5 in Europe,
the Amazon Basin, and eastern China, but at most sites in the
USA, India, and Australia, R was less than 0.2 (Fig. S9b).
The R for Phy-DL FMF was greater than 0.5 at 79.0 % of the
AERONET sites, agreeing better with AERONET FMF than
POLDER and MODIS FMFs in the USA, Africa, Southeast
Asia, and Europe (Fig. S9a).

The intercomparison results in Fig. S10 shows that when
validated by independent FMF observations not used for
training in the deep-learning model (SURFRAD FMF), Phy-
DL FMF still outperformed the other satellite products, with
the highest R (0.51), lowest RMSE (0.143), and the great-
est number of retrievals falling within the EE envelopes
of ±20 % (69.08 %) and ±40 % (89.05 %). POLDER re-
sults have an RMSE of 0.232 and R of 0.32, with 76.10 %
(48.23 %) of retrievals falling within the EE envelope of
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Figure 9. Annual mean (a) Phy-based FMF estimates, (b) DL-
based FMF estimates, and (c) Phy-DL-based FMF estimates. The
colored dots in (a), (b), and (c) show annual mean AERONET FMF.
Areas outlined in black show regions with noticeably large differ-
ences in the FMF estimates. Only those pixels with over 120 re-
trievals per year were considered. Data from 2008 to 2017 were
averaged.

±40 % (20 %). The MISR results have an R and RMSE of
0.22 and 0.212, respectively, with 82.61 % (45.38 %) of re-
trievals falling within the EE envelope of ±40 % (20 %).
The MODIS results were the poorest, with an especially
high RMSE (0.465) and low percentages of retrievals falling
within the EE envelopes of ±40 % (37.23 %) and 20 %
(18.09 %). Overall, at the independent SURFRAD sites, Phy-
DL FMF was still more accurate and reliable than the other
FMF products.

Figure 11 compares the spatial distributions of annual
mean MISR, MODIS, POLDER, and Phy-DL estimated
FMFs from 2008 to 2013. In general, Phy-DL FMF was
higher than the satellite-based FMFs over areas of known
biomass burning and urban areas, including the eastern
USA, the Amazon Basin, southern Africa, eastern China,
and Australia. The Phy-DL and AERONET FMFs in east-
ern China reached over 0.7, while POLDER, MISR, and
MODIS FMFs were significantly underestimated (∼ 0.6–0.7,
∼ 0.5–0.6, and generally < 0.4, respectively). In the west-
ern USA, Phy-DL and AERONET FMFs were higher than
0.6, but MODIS FNFs were < 0.4, and MISR and POLDER

FMFs were < 0.6. In Central Africa, POLDER, Phy-DL,
and AERONET FMFs were similar (> 0.7), but MISR FMF
ranged from 0.6 to 0.7, and MODIS FMF exceeded 0.8.
In Australia and the Amazon Basin, Phy-DL and MISR
FMFs agreed well with AERONET FMFs (0.5–0.6 for Aus-
tralia and ∼ 0.6–0.7 for the Amazon Basin), but POLDER
and MODIS FMFs (< 0.4) were significantly underestimated
compared with AERONET FMFs. Figure S11 shows the
bias, the percentage of FMF retrievals falling within the
EE envelope of ±20 %, and the RMSEs of MISR, MODIS,
POLDER, and Phy-DL FMFs over five land types (forests,
grasslands, croplands, urban, and barren), using data from
2008 to 2013. Over all land types considered and com-
pared with the satellite-based retrievals, Phy-DL FMFs had
the smallest biases, a higher percentage of FMFs falling
within the EE envelope (> 67 %), and the lowest RMSE
(< 0.127). Both POLDER and MISR FMFs had significant
negative biases of −0.2 and −0.1, respectively, over all land
types. The MODIS FMF had significant positive biases over
forests and grasslands and negative biases over croplands, ur-
ban areas, and barren areas. Over forests, grasslands, crop-
lands, and urban areas, MODIS FMF had the largest RMSE
(> 0.280), and MISR FMF had the lowest percentage of
FMFs falling within the EE envelope (< 40 %). Over barren
land and of all FMF products, POLDER FMF was the poor-
est (23.68 % of the FMFs falling within the EE envelope, and
RMSE= 0.326).

Next, we conducted a comprehensive comparison of these
satellite-based FMF products over Central Africa. Regard-
ing FMF annual mean values (Fig. 12a–d), the POLDER
and Phy-DL FMFs agreed the best with AERONET FMFs,
which captured the high values in the middle part of Cen-
tral Africa (> 0.76) and the low values along the coasts
(< 0.7). Although MISR FMF also captured the low FMFs
over coastal regions, FMFs were underestimated in the inte-
rior (< 0.7). However, MODIS FMF was significantly over-
estimated along the western coast (> 0.85) and underesti-
mated in the southeastern part of Central Africa (< 0.4). Lin-
ear trends were also calculated for all the FMF products
(Fig. 12e–h). Note that only the linear trends significant at the
95 % level were examined. The AERONET showed a signif-
icant increasing trend in the northern part of Central Africa
(+0.01 yr−1) and a decreasing trend in the southern region
(−0.01 yr−1). Of all the FMF products, Phy-DL FMF trends
agreed best with AERONET FMF trends. The POLDER and
MODIS FMF trends were greatly enhanced in the southern
region (+0.05 yr−1), while MISR FMF trends did not reflect
the AERONET FMF trends well. Overall, Fig. 12 illustrates
that in Central Africa, compared with the three satellite-
based FMF products, Phy-DL FMF is more accurate and re-
liable.

To compare seasonal differences between these methods,
Fig. 13 compares the seasonal mean Phy-DL, POLDER,
MISR, and MODIS estimated FMFs from 2008 to 2013, and
Fig. S12 shows their differences (i.e., satellite estimates mi-
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Figure 10. Evaluation of (a) Phy-DL (550 nm), (b) POLDER (490 nm), (c) MISR (550 nm), and (d) MODIS FMFs (500 nm) against
AERONET FMF (500 nm) from 2008 to 2013. Solid black and red lines are 1 : 1 reference lines and best-fit lines from linear regression,
respectively. Dashed and dotted black lines represent the EE envelopes of ±20 % and ±40 %, respectively. The number of samples (N ),
RMSE, correlation coefficient (R), and linear regression relation are given in each panel. (e) Probability density functions of the FMF bias
(estimated FMF minus AERONET FMF) for Phy-DL (green), POLDER (orange), MISR (blue) and MODIS (red) FMFs.
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Figure 11. Annual mean FMFs based on (a) Phy-DL,
(b) POLDER, (c) MISR, and (d) MODIS. The colored dots show
annual mean AERONET FMFs. Areas outlined in black circles
show regions with noticeably large differences in the FMF esti-
mates. Only those pixels with over 120 retrievals per year were
considered in the Phy-DL estimation. Data from 2008 to 2013 were
averaged.

nus Phy-DL estimates). In all seasons, Phy-DL FMFs were
generally higher than MISR FMFs over urban areas and
regions where biomass burning was prevalent, such as the
USA, eastern China, and India. During fine-mode-particle
predominant seasons (FMF> 0.8), such as summertime for
the eastern USA and wintertime for eastern China and In-
dia, differences between Phy-DL and MISR FMFs reached
<−0.18. The MODIS FMFs (< 0.2) were much lower than
Phy-DL FMFs (> 0.6) in sub-Saharan Africa, India, China,
Australia, and the western USA in all four seasons, with
differences <−0.5. Conversely, during winters in the Ama-
zon Basin and Central Africa, MODIS FMFs (> 0.74) were

slightly higher than Phy-DL FMFs (∼ 0.66); the differences
of POLDER FMFs (∼ 0.2) were globally lower than Phy-
DL FMFs in all four seasons. In the eastern USA during au-
tumn and winter, POLDER FMFs were < 0.2 and Phy-DL
FMFs were > 0.6, resulting in large differences (<−0.4).
Figure S13 shows Phy-DL, POLDER, MISR, and MODIS
estimated FMF frequencies at three levels (low: FMF< 0.5,
medium: 0.5<FMF< 0.8, high: FMF> 0.8) from 2008 to
2013. In the low-level category, MODIS and POLDER
FMFs were more frequent than AERONET FMFs (50 %
and 20 %, respectively), especially over the Amazon Basin
and western USA. The frequencies of MISR, Phy-DL, and
AERONET FMFs in this category were in good agreement.
In the medium-level category, high frequencies of Phy-DL
and AERONET FMFs occurred over Australia and the Ama-
zon Basin (> 80 %), and low frequencies of Phy-DL and
AERONET FMFs occurred in sub-Saharan Africa, Central
Africa, and eastern China (< 30 %). The MISR slightly over-
estimated the frequency of medium-level FMFs in Central
Africa and underestimated it in northern Australia and the
Amazon Basin. The frequencies of medium-level POLDER
FMFs were underestimated over the Amazon Basin and
western USA and overestimated over Southeast China. The
MODIS was unable to capture medium-level FMFs globally,
with frequencies of < 20 %. High-level FMFs mainly ap-
peared over areas experiencing biomass burning and urban
regions, with frequencies commonly < 50 %. The frequen-
cies of MODIS, Phy-DL, and AERONET FMFs in the high-
level category over Central Africa, southern China, and the
eastern USA agreed well. However, the frequencies of high-
level MODIS FMFs were overestimated over the Amazon
Basin and underestimated over northern India. The frequen-
cies of high-level POLDER FMFs were captured well over
Central Africa, but significantly underestimated over north-
ern India, southern China, and the eastern USA. Moreover,
MODIS was unable to capture high-level FMFs globally with
frequencies of < 20 %.

4 Data availability

The global land FMF dataset (2001–2020) devel-
oped in this study, Phy-DL FMF, is available at
https://doi.org/10.5281/zenodo.5105617 (Yan, 2021).
The FMF data are in the Geotiff format on a daily scale.

5 Conclusion

Given the general lack of, or the poor quality of aerosol
fine-mode fraction (FMF) over land, an improved long-term
global aerosol FMF (at 500 nm) dataset (2001–2020) was
developed over land with a hybrid retrieval algorithm com-
bining physical and deep-learning approaches called Phy-DL
FMF. It was extensively evaluated against AERONET FMF
retrievals, revealing its higher accuracy (RMSE= 0.136,
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Figure 12. (a–d) Spatial distributions of annual mean FMF (averaged from 2008 to 2013) over Central Africa based on Phy-DL, POLDER,
MISR, and MODIS. The colored dots show annual mean AERONET FMF. (e–h) Spatial distributions of the FMF linear trend from 2008
to 2013 over Central Africa based on Phy-DL, POLDER, MISR, and MODIS. The colored dots show linear trends at the AERONET sites.
Only pixels and dots with linear trends at the 95 % significance level are shown.
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Figure 13. Seasonal mean FMF, averaged from 2008 to 2013, based on (from top to bottom) Phy-DL, POLDER, MISR, and MODIS.
Columns from left to right are for spring, summer, autumn, and winter.

based on 361 089 validation samples; 79.15 % of the data fell
within the ±20 % EE envelope) and generally good agree-
ment with AERONET FMF with respect to its values, trends,
and frequencies. In addition, independent validation was con-
ducted based on SURFRAD FMF and the results showed the
RMSE of Phy-DL FMF is 0.144 with 72.50 % of the data
falling within the ±20 % EE envelope.

Compared with physical–based (calculated using LUT-
SDA, i.e., Phy-based FMF) and deep-learning-based (DL-
based FMF) FMF results, the accuracy of Phy-DL FMFs was
substantially improved over five land types (forests, grass-
lands, croplands, urban area, and barren land), lessening the
common problem of underestimation for high FMF values
and overestimations for low FMF values. Geographically,
Phy-DL FMF captured the low FMFs well over the Saharan
region, Central Asia, Australia, and southern South America,
while Phy-based FMF showed significant overestimations.
The Phy-DL FMFs were also compared with three satellite-
based official global FMF products (MISR, POLDER, and
MODIS DT-based FMFs) using both AERONET FMF and
SURFRAD FMF as references. The Phy-DL FMF showed
a significant improvement in terms of the accuracy and spa-
tial distribution of trends. In Central Africa, eastern China,
Australia, the Amazon Basin, and the western USA, Phy-DL
FMFs agreed well with AERONET FMFs, while the other
three satellite-based FMFs showed significant underestima-
tions. In particular, in southern Africa, the accuracy of the
annual average was substantially improved, and the linear
trends of Phy-DL FMF corresponded better with AERONET
FMF. The Phy-DL FMF dataset also captured the seasonality
and frequencies of FMFs well, thereby showing better agree-
ment with AERONET FMFs.

By examining Phy-DL FMFs from 2001 to 2020, we found
a general decreasing trend of −1.9× 10−3 yr−1 around the
globe at the significance level of 95 %, which was not re-
vealed by AERONET point-scale measurements. However,
both Phy-DL and AERONET FMFs showed significant in-
creasing trends in FMF over the western USA and India
(>+3× 10−3 yr−1). The new dataset captured high-level
FMFs (> 0.80) over southern China, South Asia, eastern Eu-
rope, and the eastern USA. The FMFs were consistently
< 0.3 in Northwest China, the Saharan region, and southern
South America, indicating coarse-particle desert emissions.
The findings of various evaluations, especially the attempted
explanations of the spatiotemporal variations and long-term
trend changes, suggest that this newly developed dataset is
sound, more accurate and thus useful for investigating the
impact of fine-mode and coarse-mode aerosols on the at-
mospheric environment and climate, especially in gaining a
deeper insight into fine-mode aerosols.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/essd-14-1193-2022-supplement.
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