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ABSTRACT: Fine-mode aerosol optical depth (fAOD) is a vital proxy for
the concentration of anthropogenic aerosols in the atmosphere. Currently,
the limited data length and high uncertainty of the satellite-based data
diminish the applicability of fAOD for climate research. Here, we propose a
novel pretrained deep learning framework that can extract information
underlying each satellite pixel and use it to create new latent features that can
be employed for improving retrieval accuracy in regions without in situ data.
With the proposed model, we developed a new global fAOD (at 0.5 μm) data
from 2001 to 2020, resulting in a 10% improvement in the overall correlation
coefficient (R) during site-based independent validation and a 15%
enhancement in non-AERONET site areas validation. Over the past two
decades, there has been a noticeable downward trend in global fAOD (−1.39
× 10−3/year). Compared to the general deep-learning model, our method
reduces the global trend’s previously overestimated magnitude by 7% per year. China has experienced the most significant decline
(−5.07 × 10−3/year), which is 3 times greater than the global trend. Conversely, India has shown a significant increase (7.86 × 10−4/
year). This study bridges the gap between sparse in situ observations and abundant satellite measurements, thereby improving
predictive models for global patterns of fAOD and other climate factors.
KEYWORDS: fAOD, deep learning, pretrained framework, global trend, MODIS

■ INTRODUCTION
Atmospheric fine-mode aerosols are predominately small
particles (typically radius <1 μm) which are mostly
anthropogenic and have considerable impacts on cloud
microphysics and Earth’s radiative balance. Fine-mode aerosol
optical depth (fAOD) is a vital proxy for these concentrations
of anthropogenic aerosols in the atmosphere. However, until
now large uncertainty remains about the global fAOD
changing in recent decades, especially over land where most
anthropogenic aerosols are located (see Section S1).
Although fAOD can be obtained from point-scale Aerosol

Robotic Network (AERONET) measurements, the spatial
coverage is very limited. To monitor spatial coverage fAOD,
satellite-based remote sensing combined with in situ data has
been widely adopted in both physically- and machine-learning-
based fAOD modeling. However, methods for bridging the gap
between “point measurements” made at specific locations and
“spatially continuous” satellite data remain inefficient. Figure 1
presents in situ measurements that correspond to pixel
information from a satellite image at the same longitude and
latitude. These matched data, also referred to as labeled data,
are utilized in constructing an fAOD retrieval model.1−4

However, due to the sparsity and limited coverage of ground-
based monitoring stations,5−8 not every satellite pixel data has

a corresponding ground-observed fAOD (such unmatched
satellite pixel data is also known as unlabeled data). As a
consequence, there is often a wealth of satellite measurements
never used for developing models. The vast potential of these
unused data remains greatly unexplored and underexploited for
model development. One of the most vital problems to tackle
in earth environment modeling is how to make full use of these
disregarded data.
The integration of satellite and in situ data has improved

simulations of the fAOD, especially via the machine-learning
approach.9−13 Machine learning builds past or present-day
relationships between ground-based observed fAOD and
satellite information to develop models. In this process, in
situ fAOD are used in machine learning to train the model and
validate its results. However, a machine-learning model may
incur large errors at locations distant from any in situ
station.14−18 Thus, there is an urgent need to improve the
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accuracy of modeling in areas where no ground-based sites are
available to assist in model training.19,20

In recent years, the successful application of pretrained
models in natural language processing and global weather
forecasting has attracted significant attention.21 The core
concept of pretrained model is that by exposing the model to a
vast pool of unlabeled data, it can acquire generalizable and
universal data representations.22 These representations encap-

sulate the intrinsic structure and relationships within the data,
enabling the model to generalize more effectively and perform
well on subsequent tasks. For instance, in the field of natural
language processing, pretrained language models such as
generative pre-trained transformer-4 (GPT-4) in ChatGPT
undergo pretraining on extensive text data (referred to as
unlabeled data) without specific task-oriented guidance.23 The
acquired representations capture grammar and semantic

Figure 1. Satellite-based remote sensing in combination with in situ data modeling.

Figure 2. Schematic of the DLFE-Satellite model. The model contains three major parts. The first part in the top row shows the construction of
data using spatiotemporal characteristic information from satellite data with no in situ observations. The second part in the middle row shows the
use of the BRNN to learn the latent correlation from previously constructed data, producing new latent features. The third part in the last row
shows the final target estimations in the deep-learning EntityDenseNet model using a combination of satellite data with in situ observations and
new latent features.
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information, which can then be utilized as input for subsequent
tasks like text classification, enhancing the model’s overall
performance. Therefore, We are in immediate need of
developing pretrained models similar to GPT, which can
learn useful representations of satellite signals from unlabeled
satellite data and capture potential intrinsic relationships and
patterns, enabling them to better capture information related
to fAOD in downstream tasks. However, there is currently
limited research on how to construct such pretrained models.
Here, to better understand the global fAOD changing in

recent decades, we need to address two fundamental key
questions: How can satellite data without corresponding in situ
observations be used in fAOD modeling, and can this hitherto-
disregarded data improve model performance? To solve these
issues, we developed a novel pretrained deep-learning
framework called the “deep learning framework of latent
features extraction for satellite data with missing in situ
observations” (DLFE-satellite) to make full use of each pixel
value measured by satellites to train a model. Data-use
efficiency is significantly improved by including all satellite
data in the modeling process. In this study, we conducted a
series of experiments at the national and global scales to test
the new method and demonstrate how it leads to substantial
accuracy improvements in areas where no in situ observations
are available.

■ METHODS
Proposed New Pretrained Framework: DLFE-Satel-

lite. To fully use the information from the unused satellite
measurements, we developed a new pretrained framework
called DLFE-Satellite.
Figure 2 shows the overall flow of the DLFE-Satellite

framework. It consists of three main parts. The first part is to
convert satellite image information into tabular data, which
arranges data elements in vertical columns (features) and
horizontal rows (samples). The tabular data were separated
into two groups: one group containing information from
satellite pixels with corresponding in situ data (labeled data;
see the red boxes of X1, X2, X3··· in Figure 2), and the other
group containing information from satellite pixels without it
(unlabeled data; see the blue boxes of B1, B2, B3··· in Figure
2). The latter group of data was constructed using
spatiotemporal characteristic information, a step needed for
the next part of the approach. For example, as shown in Figure
2, information from satellite pixels located over Beijing in the
summer was converted into one set of tabular data.
The second part of the DLFE-Satellite approach is

pretraining by self-supervised learning for the satellite data
with no in situ observations. We introduced the value
imputation and mask estimation (VIME) approach24 into the
DLFE-Satellite which provides two novel pretext tasks for self-
supervised learning. In DLFE-Satellite, a large amount of
unlabeled data is exploited to train a model f (Figure S1, deep
learning model 1). Then, the pretrained model f gets the ability
to capture high-level representations of the unlabeled data and
is transferred together with the labeled data to a supervised
downstream task (deep learning model 2) for fAOD retrieval.
The detailed processes to train f by Deep learning model 1 in
DLFE-Satellite are:
Define the Pretext Tasks. Based on a certain VIME

objective, two pretext tasks are used: (1) Mask vector
estimation and (2) feature vector estimation (Figure S2).
The purpose of Mask vector estimation is to predict the

probability of which data have been masked. The output data
is between 0 and 1, with values closer to 0 indicating that the
data has not been masked, and values closer to 1 indicating
that the data has been masked. The purpose of feature vector
estimation is to predict the values of the data that have been
corrupted.

Data Corruption and Masking. The constructed tabular
data (satellite data with no in situ observations) in the first part
of the DLFE-Satellite are used for generating corrupted data X̃

X X M X M(1 )= + (1)

where ⊙ is element-wise matrix multiplication; X is the original
matrix from the constructed tabular data; M is a mask matrix
from a Bernoulli distribution (value is 0 or 1); and X̅ is
randomly shuffled the original data within each feature.

Model Training and Optimization. A batch normalization
and robust neural network (BRNN)11 was used as the Deep
learning model 1 in DLFE-Satellite for learning the latent
correlation from X. The loss function of Mask vector
estimation lM is defined asÄ

Ç
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where yi is the ith corresponding true mask value 1 or 0; pi is
the ith probability of 1 from BRNN output; 1 − pi is the
probability of 0, and N is the number of rows.
The loss function of Feature vector estimation lF, was

defined as

l
N

y y1
( )

i

N

i iF
1

m o 2=
= (3)

where yim is the ith true value; yio is the ith BRNN output
estimate; and N is the number of rows.
The BRNN is final optimization by a combination of these

two loss functions

l w lmin( )M F+ × (4)

where w is an adjustment parameter for the two loss functions,
determined by the training process. The pretrained BRNN
generates new latent features for supervised downstream tasks
(deep learning model 2).
The third part of the DLFE-Satellite is combining the newly

generated latent features with satellite pixels having corre-
sponding in situ data to Deep learning model 2 for fAOD
retrieval. We introduced EntityDenseNet25 as the deep
learning model 2 for the final DLFE-Satellite fAOD retrieval.
EntityDenseNet employs an optimized neural network capable
of capturing intricate nonlinear relationships. Each hidden
layer consists of a ReLU layer, a BN layer,26 and a dropout
layer.27 Moreover, EntityDenseNet leverages the entity
embedding method for the direct processing of categorical
variables,28 enabling comprehensive information extraction
from such variables within the neural network.
Input Data for Global Satellite-Based fAOD Retrieval.

The DLFE-Satellite model was utilized to estimate global 20-
year (2001 to 2020) fAODs. For the purpose of model training
and validation using ground-truth data, we collected the
AERONET Version 3 data set,29 which includes multispectral
AOD data and fine-mode fraction (FMF) data derived via the
spectral deconvolution algorithm (SDA).30,31 The respective
uncertainties for AOD and FMF stand at 0.02 and 0.1,
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respectively30,31 To ensure sufficient training data, we used
Level 1.5 fAOD data from 2001 to 2020 for modeling.
The satellite products employed in this research comprised

the MODIS C6.1 L1B MOD02SSH product, encompassing
top-of-the-atmosphere reflectance from bands 1 to 7, and the
MODIS C6.1 L3MOD09CMG product, including surface
brightness temperature from bands 20, 21, 31, and 32, surface
reflectance from bands 1 to 7, relative azimuth angle, solar
zenith angle, and viewing zenith angle. These products were
utilized at a spatial resolution of 5 km. Additionally, the
MOD08_D3 product provided AODs at 550 nm, offering a
spatial resolution of 1° × 1°.
The ERA5 reanalysis provided hourly meteorological data at

a spatial resolution of 0.25°. For this study, we utilized the
following parameters at 11 am local time (GMT+8), which
aligns with the Terra satellite overpass time: 2-m air
temperature, 2-m dew-point temperature, planetary boundary
layer height (PBLH), surface pressure, and 10-m U/V wind
components. These data were used to extract the fine-mode
aerosol optical depth (fAOD) for the period from 2001 to
2020. Moreover, we computed relative humidity by employing
the dew-point and surface temperatures.
Additionally, we incorporated a global digital elevation

model (DEM) with a resolution of 250 m as Supporting Data.
To ensure consistency, all the data employed for fAOD
estimation underwent resampling to a spatial resolution of 1°
× 1°, using the bilinear interpolation technique. Multiple
AERONET stations were averaged when they all fell within the
same 1° by 1° grid. Further information about these data sets is
available in Table S1.
Modeling Validation and Comparison.We matched the

images at a spatial resolution of 1° × 1° and a daily temporal
resolution with AERONET SDA fAODs (at 0.5 μm) as input
data. Site-based independent validation was implemented to
assess the model’s performance in estimating fAOD. The
global AERONET stations were randomly partitioned into
training (272 stations), validation (72 stations), and testing
(78 stations) subsets (Figure S3). We partitioned the 20-year
tabular data set (N = 301,226) by these stations into training
(N = 184,324), validation (N = 56,909), and testing (N =

59,993) subsets for modeling purposes. Leveraging well-trained
models, we generated 20-year global daily fAOD products and
gauged their accuracy against AERONET fAOD retrievals.
This evaluation involved key metrics such as the Pearson
correlation coefficient (R), root-mean-square error (RMSE),
mean absolute error (MAE), as well as the rate of change in
RMSE and MAE (refer to supporting, Section S2 for further
details).
To compare the performance over regions without

AERONET measurement, we used daily mean fAODs from
2001 to 2020 retrieved from six Surface Radiation Budget
(SURFRAD) sites (Figure S4 and Table S2). The multifilter
rotating shadowband radiometer (MFRSR) provides spectral
solar measurements at SURFRAD sites approximately 10 nm
wide and the peak nominally at 415, 500, 614, 670, 870, and
940 nm,32 thus it is able to apply the spectral deconvolution
algorithm (SDA) method to calculate the fAOD (SURFRAD
fAOD) for validation purposes. The details of the SDA method
can be found in.33 The SURFRAD sites were distant from
those of AERONET and were not included in the modeling, so
data from these sites could be used for independent validation
purposes. The performances of the general deep-learning
model (GDLM) and DLFE-Satellite models in estimating
fAOD were compared in terms of overall agreement and spatial
distributions, based on comparisons between estimated
products and two sets of in situ measurements. Here, we
employed EntityDenseNet as the GDLM, which is the same as
the deep learning model 2 from the DLFE-Satellite. In this
way, the comparison will show whether and how much the
pretrained model can improve the fAOD estimation.
We also compared the DLFE-Satellite retrieved fAOD with

three widely used satellite products from POLDER/GRASP,
MISR and MODIS. For POLDER/GRASP, the fAOD at 490
nm from the “High-precision” product with 1° spatial
resolution was used.34−36 For MISR, we used MISR L3 daily
data MIL3DAEN (available at https://asdc.larc.nasa.gov/data/
MISR/) that contains fAOD at 550 nm with 0.5° spatial
resolution.37,38 For MODIS, although not recommended to
use and excluded in the latest MODIS collection 6.1 (C6.1)
product, daily FMF data at 550 nm can be obtained from

Figure 3. Validation global fAOD at SURFRAD (independent validation) and AERONET from 2001 to 2020 by GDLM and DLFE-Satellite. (a, b)
Density scatterplots of GDLM and DLFE-Satellite fAOD estimate against SURFRAD fAODs for independent validation. (c, d) Density scatterplots
of GDLM and DLFE-Satellite fAOD estimate against AERONET fAODs (testing data sets). The black dashed line signifies the 1:1 relationship,
the red solid line represents the linear fitting line, and two black dotted lines delineate the expected error (EE) envelope of ± (0.05 + 15%). (e, f)
Annual mean fAOD estimates (colored background) and SURFRAD fAODs (triangles, with black numbers indicating the observed fAOD) for the
year 2009, with three zoomed-in regions showing the annual mean fAOD estimates (red numbers).
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previous MODIS C5 product at 1° spatial resolution,39 which
was used to obtain the fAOD (fAOD = FMF × AOD).
Lastly, because of the adaptability of the DLFE-Satellite

framework, one can use various machine-learning models to
replace the deep learning models 1 and 2 in the framework
(Figure S1), according to their needs. To validate the
performance of the DLFE-Satellite framework with different
models, we applied two widely used machine learning models
(XGBoost and LightGBM) as the Deep learning model 2 in
this framework. The same input data as mentioned above for
fAOD retrieval were used in this experiment.

■ RESULTS
Improvements by the New Deep-Learning Frame-

work for Global fAOD. The goal of DLFE-Satellite is to fully
utilize data through a pretraining process, learning latent
information from the non-in situ satellite data that is ignored in
the GDLM, as shown in Figure 1. This learned information
from the pretrained model is then used to extract new latent
features, thereby improving the fAOD retrieval accuracy (The
schematic flowchart of DLFE-Satellite is illustrated in Figure
S1). We performed two comprehensive validation tests for the
DLFE-Satellite framework. Initially, we conducted a site-based
validation using data from 78 AERONET testing stations
(Figure S3) to evaluate our 20-year global fAOD product from
the DLFE-Satellite model. This validation showed a strong

Figure 4. 20-Year global mean differences between GDLM and DLFE-Satellite fAOD estimates. (a) Distribution of 20-year global mean differences
between GDLM and DLFE-Satellite fAOD estimates. Black dots indicate AERONET sites with a minimum of 5 years of data. The probability
density function (PDF) inset figure shows the distribution of fAOD relative differences (%) at the global scale. (b, c) Distributions of 20-year global
mean fAOD differences over Western Europe and Central Asia. (d) Boxplots of fAOD relative differences (%) over Central Asia and Western
Europe. In each box, the upper, middle, and lower lines are the 75th, median, and 25th percentiles, respectively. The dot in the box represents the
mean fAOD relative difference value. (e, f) Same as (b, c) but for Mexico and the Eastern US. (g) Same as (d) but for Mexico and the Eastern US.
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correlation (R-value of 0.88) and low error rates (RMSE of
0.11 and MAE of 0.05), with 84% of retrievals falling within
the expected error range ± (0.05 + 15%) (Figure S5). When
compared to the GDLM fAOD retrievals, the DLFE-Satellite
model exhibited a 10% improvement in R value and a 21%
reduction in RMSE.
Furthermore, for a comprehensive assessment of the

retrieval performance in regions without AERONET measure-
ments, we utilized fAOD retrievals obtained from six Surface
Radiation Budget Network (SURFRAD) sites in the US
(Figure S4). It is worth noting that these SURFRAD sites are
situated in the proximity of AERONET sites but were not
employed in the validation process. As illustrated in Figure
3a,b, a comparison between the GDLM fAOD retrievals and
the results obtained indicates an increase in R from 0.68 to
0.78 (a 15% improvement) and a decrease in RMSE from 0.16
to 0.14 (a reduction of 14%). Over the SURFRAD sites,
GDLM-modeled fAODs (Figure 3e) were significantly under-
estimated over the northeastern US compared with those
modeled with DLFE-Satellite (Figure 3f). Specifically, at the
Sioux Falls, Bondville, and Penn State sites, GDLM-modeled
fAOD values were notably underestimated compared with the
DLFE-Satellite-modeled fAODs, especially at the Penn State
site, where 25% of the fAOD data set values were
underestimated.
To examine the contribution of variables generated by a

pretrained model to the calculation of fAOD, we analyzed
these variables using the feature importance within a random
forest model. As illustrated in Figure S6a, some variables
created by the pretrained model exhibited a stronger influence
on the calculation of fAOD compared to the original variables,
with one ranking second among all variables. This shows that

the pretrained model effectively captured the correlations
among the original variables and was able to generate new
latent representations that can recover these original variables,
thus having the potential to provide more general representa-
tions. Using the same input data, we rebuilt the DLFE-Satellite
model with XGBoost (DLFE-XGBoost) and LightGBM
(DLFE-LightGBM). In global fAOD retrievals (Figure S6b),
this new pretrained framework shows that improvements can
be also achieved using both DLFE-XGBoost and DLFE-
LightGBM models. Especially in DLFE-XGBoost, the mean
improvement of R can be achieved at 0.05.
At the global scale, significant relative differences were

observed in regions with a limited number of AERONET sites
(Figure 4). Relative differences were large in Mexico and
Central Asia with a limited number of AERONET sites (Figure
4b,c). From 2001 to 2020, much higher relative differences
were revealed over Central Asia (10.60%) than over Western
Europe (4.24%) (Figure 4b,c). Similar trends were also seen
when comparing relative differences between Mexico and the
Eastern US (Figure 4e,f). In other regions with sparse
AERONET sites, such as Bangladesh and Mississippi State,
relative differences between DLFE-Satellite- and GDLM-
modeled fAODs reached up to 20%.
We have also conducted a comparison among the three

widely used and recognized fAOD products from MISR,
MODIS, and POLDER, with DLFE-Satellite retrievals. Figure
S7a−d illustrate the monthly mean fAOD product comparison
with AERONET measurements from 2008−2013. We
considered data points where all four fAOD products were
available simultaneously at the same location and time. Overall,
the DLFE-Satellite fAOD demonstrates the strongest agree-
ment with AERONET measurements, displaying an R value of

Figure 5. (a) Global spatial distribution of annual mean DLFE-Satellite fAOD in 2001−2020. The red boxes indicated four regions with clear
seasonal variation of fAOD. (b−e) Same as (a) but for seasonal mean in March−April−May (MAM), June−July−August (JJA), September−
October−November (SON), and December−January−February (DJF). (f) Annual and seasonal mean DLFE-Satellite fAOD averaged over four
regions with clear seasonal variation of fAOD. The error bars represent the standard deviations over the space ± mean values.
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0.95 and an RMSE of 0.04. Notably, this performance is
comparable, and in some aspects, slightly superior to that of
the POLDER fAOD (R = 0.82, RMSE = 0.14). By contrast, the
fitting slope (0.32) for the MISR fAOD indicated an
underestimation when compared to AERONET measure-
ments, with an R value of 0.70 and an RMSE of 0.16.
Meanwhile, the MODIS fAOD showed the least favorable
performance (R = 0.60, RMSE = 0.23) when compared to
AERONET fAOD. Therefore, it can be concluded that the
overall accuracy of the DLFE-Satellite fAOD is dependable in
comparison to the existing products.
Global Fine-Mode Aerosol Spatial Patterns during

2001−2020. As illustrated in Figure 5a, the DLFE-Satellite-
derived fAOD data reveal a pronounced global disparity in
aerosol pollution levels, identifying alarmingly high concen-
trations of fAOD (>0.45) particularly in eastern China and
northern India. Such elevated levels are primarily attributed to
the intense industrial and residential emissions prevalent in
these regions, thus underscoring the profound environmental
repercussions of human activities.40−42 Similarly severe
conditions in central Africa and the Amazon regions, where
fAOD values exceed 0.3. This is largely due to widespread

biomass burning and forest fires, which emit substantial
amounts of black and organic carbon into the atmosphere.43

By contrast, regions like central Asia, Australia, southern South
America, and the western US report lower fAOD (<0.1),
indicating relatively minor fine mode aerosol level. In assessing
the reliability of the DLFE-Satellite-derived fAOD, we
embarked on a meticulous comparison with the POLDER
fAOD (only available from 2008 to 2013) to evaluate the
spatial congruence and magnitude of fAOD captured by both
data sets. As illustrated in Figure S9e,f, both the DLFE-Satellite
and POLDER data sets proficiently identify regions of high
aerosol concentration (>0.3) across Eastern China and Central
Africa, as well as zones of minimal aerosol presence (<0.1) in
Central Asia and the Western US.
Figure 5b−e depicts the global spatial distribution of the

mean seasonal fractional fAOD for the period 2001−2020,
revealing significant seasonal variations and unique regional
disparities. A noteworthy observation is the dramatic increase
in fAOD levels in Southeast Asia during the spring, where
values surge above 0.5. This starkly contrasts with other
seasons, where fAOD levels remain under 0.32. The primary
driver behind this substantial springtime spike is the region’s

Figure 6. (a) Global DLFE-Satellite fAOD linear trends from 2001 to 2020 (at the 95% significance level). The blue and red points represent
AERONET sites with decreasing and increasing linear trends at the 95% significance level. (b) Monthly mean time series of DLFE-Satellite fAOD
from 2001 to 2020 in India and China. The dashed lines are the linear fitting lines, and the shaded areas represent the monthly mean fAOD ± the
monthly standard deviation of fAOD. Decadal mean fAOD values from AERONET in India and China are annotated. (c) The 3D frame shows the
decadal mean DLFE-Satellite fAODs averaged over the periods 2001−2010 and 2010−2020 in India and China. (d) Time series of global annual
mean GDLM (red line and dots) and DLFE-Satellite (blue line and dots) fAODs from 2001 to 2020. Dashed red and blue lines represent the best-
fit lines from linear regression. The shaded areas represent the likely range of annual mean fAOD ± 0.1 × (annual fAOD standard deviation). (e)
Decadal linear trends of GDLM fAOD (red bars), DLFE-Satellite fAOD (blue bars), and AERONET fAOD (orange bars) from 2001 to 2010 (left
side) and 2011 to 2020 (right side). Error bars represent 95% confidence intervals of the trends. (f) Differences in 20-year annual mean fAODs
(DLFE-Satellite fAOD minus GDLM fAOD) over Mexico. (g) Time series of annual mean fAOD GDLM (red line and dots) and DLFE-Satellite
(blue line and dots) fAODs from 2001 to 2020 over Mexico. Dashed red and blue lines represent the best-fit lines from linear regression. The inset
figure shows the 20-year linear trends of GDLM fAOD (red bars) and DLFE-Satellite fAOD (blue bars), with error bars representing 95%
confidence intervals of the trends. (h) Same as (f) but for Bangladesh. (i) Same as (g) but for Bangladesh.
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intense period of biomass burning from January to April, which
propels fAOD values to these exceptionally high levels.44

Central Africa experiences a notable rise in fAOD during the
summer and autumn months, with values surpassing 0.7,
distinctly exceeding the levels observed in other seasons, which
remain under 0.40. This pattern correlates with the seasonally
aligned peaks in local biomass burning activities.45 In South
America, characterized by its intense biomass burning from
summer through autumn,43,46 the highest of fAOD values is
reached in autumn, with measurements exceeding 0.60. This
contrasts starkly with the significantly lower spring values,
below 0.20, showcasing the dramatic seasonal variances. In
Northern India, a unique scenario unfolds where fAOD peaks
during the autumn and winter months. This is attributed to the
lowering of boundary layer heights and unfavorable atmos-
pheric dispersion conditions during these months.47 Such
environmental factors lead to the significant accumulation of
anthropogenic emissions, resulting in the observed high fAOD
levels.
Unveiling Global and Regional Trends from Derived

fAOD over the Past Two Decades. As for long-term fAOD
trends, Figure 6a shows global DLFE-Satellite and AERONET
fAOD linear trends from 2001 to 2020. In general, both data
sets show significant decreasing trends (p-value <0.05) in
fAOD over the eastern US, the Amazon rainforest, Europe, and
eastern China. At each AERONET station, the DLFE-Satellite
and AERONET fAOD trends agreed well with 95.5% of
stations showing the same trend signs, indicating that the
DLFE-Satellite fAOD captured reliable fAOD trends (Figure
S8). However, recent studies have identified an increasing
trend for surface PM2.5 over central eastern China from 1998
to 2018.48 This inconsistency is attributed to a notable
opposing trend in aerosols observed between low and high
altitudes over China: vertical distribution of trends in AOD
appeared to be increasing near the surface (low altitude),
whereas AOD at high altitudes indicated a downward
tendency.14 Strong downward trends in fAOD over eastern
China, suggesting transported pollution into the western US
via westerly flow, do not play a leading role in the positive
fAOD trend over the western US. In the western US, aerosols
are known to demonstrate a positive trend because of smoke
from frequent wildfires.49

The most notable surge in fAOD has been observed in India
(7.86 × 10−4/year), where a striking decadal increase from
0.41 to 0.49, particularly in the northern (escalating from
<0.44 to >0.53) and central regions (rising from <0.27 to
∼0.36), as illustrated in Figure 6b,c. This increase aligns with
AERONET data, which confirms a growth in mean fAOD
from 0.41 to 0.47 (Figure S9), primarily driven by escalating
anthropogenic emissions from heightened energy consump-
tion, agricultural residue burning, and transportation activ-
ities.40,41,50 Conversely, China has seen a significant reduction
in fAOD, particularly in the North China Plain where fAOD
decreased from >0.79 to <0.70, complemented by a notable
decline of 0.07 in AERONET fAODs (Figure S10). This
decrease is largely attributed to effective environmental policies
targeting industrial and vehicular emissions,51 marking a
contrasting trend in regional air quality dynamics. Compared
to the global mean fAOD decreasing trend (−1.39 × 10−3/
year), the annual mean trend of fAOD in China is 3 times
higher (−5.07 × 10−3/year), reflecting effective control of
anthropogenic emissions.

Comparing DLFE-Satellite with GDLM results for global
fAOD trends analysis, although both results show significant
decreasing trends, the GDLM model overestimated the global
declining trend for fAODs by 7% per year compared to the
DLFE-Satellite model (Figure 6d). Figure 6e shows that in the
second decade (2011 to 2020), the difference in trends
between GDLM and ground-based AERONET (Δtrend = 7 ×
10−4/yr) was 3 times more than that between DLFE-Satellite
and ground-based AERONET (Δtrend = 2 × 10−4/yr). At the
national scale of Mexico, GMDL-modeled fAODs were
generally lower than those modeled with DLFE-Satellite
(Figure 6f). The decrease in fAOD over time was captured
by both modeled sets (Figure 6g), corresponding well to the
reduction in air pollutants in Mexico due to the establishment
of the Environmental State Plan 1995−2020 (Plan Estatal de
Medio Ambiente 1995−2020).52,53 The GDLM model
overestimated the declining trend over Mexico by 16.6% per
year compared with that estimated by the DLFE-Satellite
model (−1.45 × 10−3/yr). GMDL-modeled fAODs over
Bangladesh were generally higher than DLFE-Satellite-
modeled values (Figure 6h). As one of the world’s most
polluted countries, Bangladesh has experienced a significant
increase in air pollution.54,55 This was captured by the times
series of GMDL- and DLFE-Satellite-modeled annual mean
fAODS (Figure 6i), which showed increases in fine-mode
aerosols from 2001 to 2020. The GDLM model overestimated
the increasing fAOD trend by 7.7% per year compared with
that estimated with the DLFE-Satellite model (7.71 × 10−3/
yr). The MISR fAOD trend also shows a decreasing trend
similar to the DLFE-Satellite fAOD (Figure S10). However,
the magnitude (3.18 × 10−4/yr) is smaller than the trend of
DLFE-Satellite fAOD (1.39 × 10−3/yr). This is attributed to
the underestimation of MISR fAOD compared to the DLFE-
Satellite fAOD and AERONET, emphasizing that an accurate
estimation of fAOD is important for determining both the sign
and magnitude of the global fAOD trend.

■ DISCUSSION
The accuracy of satellite-based fAOD modeling is constrained
by a lack of in situ sites. The number of ground-based
monitoring sites in networks such as the AERONET29 is still
limited and sparse in underdeveloped and developing countries
with imbalanced distribution. To address this issue, we
proposed a new pretrained framework for the DLFE-Satellite
model (Figure 2) to fully exploit the latent information in
unused satellite data during fAOD modeling, especially for
regions with sparse in situ sites. Satellite measurements from
pixels without monitoring sites were used for model
pretraining to create new latent features. These features aim
to capture the latent correlation that is ignored by traditional
machine-learning models for satellite-based remote sensing,
providing rich information to support a robust and general-
izable model. By taking advantage of latent features, the DLFE-
Satellite model expands the amount of training data in areas
with sparse or no in situ sites, leading to improvements in the
fitting efficiency and generating reliable spatial patterns for
satellite-based remote sensing.
The DLFE-Satellite model is different from other such

models in two important ways. First, predictions with the
DLFE-Satellite model employ all imagery information rather
than using only those pixels with in situ sites, as done in
previous studies.56−58 This allows the full use of rich
information, enhancing the model’s adaptability and predictive
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accuracy. Second, the DLFE-Satellite model also works flexibly
to fit the needs of various models for a range of satellite-based
retrieval tasks. Because machine learning models generally rely
on the integration of satellite and in situ data for retrievals,
disparities can emerge among various machine learning
models.
On a global scale, we utilized the DLFE-Satellite model to

estimate fAOD (at 0.5 μm) from 2001 to 2020. The
employment of the DLFE-Satellite model for fAOD estimation
led to a substantial enhancement in the performance of site-
based independent validation, with an increase in the
correlation coefficient (R) from 0.80 to 0.88, as compared to
the utilization of the GDML model. Additionally, over regions
lacking AERONET measurement, the DLFE-Satellite model
significantly improved the agreement with SURFRAD fAOD,
demonstrating an increase in the correlation coefficient (R)
from 0.68 to 0.78 (a 15% enhancement). Consequently, we
have confidence in the reliability and comparability of the
results based on the DLFE-Satellite fAOD when compared to
existing products. Owing to the DLFE-Satellite model, the
improved fAOD data has brought us a more accurate trend
analysis, which is closer to the trend by AERONET stations,
reducing the error (Δtrend = 2 × 10−4/yr) by nearly 3.5 times
compared to the GDLM (Δtrend = 7 × 10−4/yr). This is
important for monitoring the effectiveness of pollution control
measures over time, which enables policymakers to adjust
strategies as needed and track progress toward air quality goals
more accurately.
The global mean fAOD trend is −1.39 × 10−3/year

indicating a general decrease. The factors contributing to this
global decrease in fine mode aerosols differ across regions but
are primarily linked to the enactment of air quality regulations
that impose stringent emissions standards on industries and
vehicles, thereby enhancing air quality. Furthermore, techno-
logical advancements have resulted in more efficient
combustion mechanisms within vehicles and industrial
settings,41 coupled with a transition from coal to more
environmentally friendly energy sources.40 The rate of decline
in China’s fine mode aerosols (−5.07 × 10−3/year) has
reached 3 times that of the global decrease rate, demonstrating
the success of policy regulation. Although India also has
implemented air quality regulations, there are obviously some
issues with enforcement, as the decadal mean fAOD in India
increased substantially from 0.41 to 0.49. This research
developed an innovative model DLFE-Satellite to fAOD
estimation through the use of latent feature extraction from
ignored satellite data, particularly benefiting areas with sparse
ground monitoring. This method improves fAOD modeling
precision and offers a more accurate depiction of global fAOD
trends, supporting targeted environmental policy adjustments.
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