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ABSTRACT: Wildfires generate abundant smoke primarily composed of fine-
mode aerosols. However, accurately measuring the fine-mode aerosol optical depth
(fAOD) is highly uncertain in most existing satellite-based aerosol products. Deep
learning offers promise for inferring fAOD, but little has been done using multiangle
satellite data. We developed an innovative angle-dependent deep-learning model
(ADLM) that accounts for angular diversity in dual-angle observations. The model
captures aerosol properties observed from dual angles in the contiguous United
States and explores the potential of Greenhouse gases Observing Satellite-2’s
(GOSAT-2) measurements to retrieve fAOD at a 460 m spatial resolution. The
ADLM demonstrates a strong performance through rigorous validation against
ground-based data, revealing small biases. By comparison, the official fAOD product
from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible
Infrared Imaging Radiometer Suite (VIIRS), and the Multiangle Imaging
Spectroradiometer (MISR) during wildfire events is underestimated by more than 40% over western USA. This leads to significant
differences in estimates of aerosol radiative forcing (ARF) from wildfires. The ADLM shows more than 20% stronger ARF than the
MODIS, VIIRS, and MISR estimates, highlighting a greater impact of wildfire fAOD on Earth’s energy balance.
KEYWORDS: GOSAT-2, fAOD, deep learning, wildfire, aerosol radiative forcing

■ INTRODUCTION
Wildfires are a significant environmental concern, occurring
globally and playing a significant role in the Earth’s
ecosystem.1,2 While they have been a part of planet’s
geographical history, the frequency and intensity of wildfires
have increased in recent years due to various factors such as
climate change, land management, and human activities.3,4

There have been significant increases in fire activities in the
western United States (U.S.) in the past couple of decades.2,5,6

While the particulate matter with diameters less than 2.5 μm
(PM2.5) has decreased dramatically across populated areas of
the U.S., fine-mode aerosols chiefly from wildfires in the
western U.S. have shown a reverse trend,7 leading to increases
in the contribution of smoke to total PM2.5

8,9 and population
exposure to unhealthy air.10,11 Fine-mode aerosols profoundly
influence Earth’s radiation balance,12 climate change,13 and
human health.14 Accurately determining fine-mode aerosols
from wildfire emissions is thus critical for assessing environ-
mental and climate impacts.

The fine-mode aerosol optical depth (fAOD), a measure of
fine-mode aerosol loading, is highly uncertain in most currently
released satellite-based products, especially over land where
most wildfires occur.15 Many satellite instruments that retrieve
fAOD are single-view-angle sensors, such as the Moderate-
resolution Imaging Spectroradiometer (MODIS),16,17 Ad-
vanced Himawari Imager (AHI),18 and the Visible Infrared
Imaging Radiometer Suite (VIIRS).6,19 As a single-view
algorithm, the accuracy of fAOD retrievals relies heavily on
good knowledge of the surface reflectance.20−22 However,
accurately determining the surface reflectance over land is
challenging due to complex surface properties and dynamic
topographic variations.23,24 This uncertainty raises concerns
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about a gap in our understanding of the overall fAOD burden
resulting from wildfires.
As a new dual-angle Earth observation satellite, GOSAT-2

was launched on 29 October 2018.25 One of its onboard
sensors is the Thermal and Near-infrared Sensor for carbon
Observation-Cloud and Aerosol Imager-2 (CAI-2), which
measures reflected sunlight energy at the forward and
backward scans. Previous studies have shown that dual-angle
(AATSR)26,27 and even multiangle (MISR)28,29 satellite
observations are much less dependent or independent of
accurate surface reflectance and have a greater capacity to
retrieve aerosol size information compared to single-view-
based observations. However, most current aerosol retrieval
schemes involve using look-up tables (LUTs) generated by
radiative transfer models and may not encompass the full
parameter space of real-world conditions.30−33 As a result,
LUT-based methods struggle to accurately retrieve aerosol
properties outside their precomputed ranges,34 leading to very
large uncertainties in the retrieval of fAOD.
Deep learning has emerged as a powerful tool in recent years

for satellite-based fAOD monitoring.35−41 However, effectively
utilizing the wealth of information contained in dual-angle
measurements to enhance the retrieval of fAOD has not been
exploited. GOSAT-2 provides near-simultaneous observations
from two viewing angles. Therefore, a fundamental outstanding
question is how to make a deep-learning model take advantage
of these unique characteristics and train it to explicitly consider
the varying angles, as illustrated in Figure 1.
To fill this research gap, we have developed a new angle-

dependent deep learning model (ADLM) and applied it to
quantify fAODs associated with wildfires in the western U.S.
The new model can effectively leverage the angular
information contained in GOSAT-2 measurements at a 460
m spatial resolution. The validation shows significant improve-
ment upon current satellite-based estimates of wildfire-induced
fAOD from which a better understanding of smoke aerosol
radiative forcing can be gained.

■ MATERIALS AND METHODS
GOSAT-2 Data. GOSAT-2 is equipped with two advanced

sensors: Fourier Transform Spectrometer-2 and CAI-2.
Particularly notable are CAI-2’s two bands in the ultraviolet

region (339 and 377 nm), effective for characterizing aerosols
over various landscapes, including urban areas. In addition to
its proficiency in the shortwave infrared domain, CAI-2 has a
high spatial resolution, i.e., 460 m. Tables S1 and S2 provide
the specific parameters of CAI-2. In this study, we collected the
CAI-2 data set for the contiguous United States from 2019 to
2022. Specifically, we resampled the shortwave infrared
channel to 460 m, ensuring a consistent spatial resolution
across other bands. For cloud masking, we employed the
official cloud removal algorithm for the CAI-2 sensor, known
as CLAUDIA 3 (more details about the algorithm in Section
S2).42,43

MODIS and VIIRS fAOD. Both MODIS and VIIRS provide
fine-mode fraction (FMF) data generated by the Dark Target
algorithm from which fAOD is calculated as fAOD = AOD ×
FMF.44 We obtained Level 2-based fAOD from VIIRS
(AERDT_L2_VIIRS_SNPP, spatial resolution of 6 km × 6
km) and MODIS (MYD04, Collection 6.1, spatial resolution of
3 km × 3 km), matching the GOSAT-2 time frame for the
comparative validation analysis of fAOD at 550 nm (Table S3).
It is worth noting that in the calculation of fAOD, we both
apply quality control (QA = 3) to VIIRS or MODIS AOD to
reduce uncertainties introduced by thin cirrus and smoke
plumes.
MISR fAOD. The MISR onboard the National Aeronautics

and Space Administration Earth Observing System Terra
satellite has been successfully capturing global aerosol
characteristics since 2000.45 MISR possesses the capability to
observe at nine different viewing angles, enabling it to quantify
fine-mode aerosols, which are distinguished by their size of less
than 0.35 μm in diameter (Table S3).29 In this study, we
employed the MIL2ASAE_3 product (level 2, version 3) for
daily fAOD information at 550 nm of 4.4 km × 4.4 km.46

Ground-Truth fAOD Observations. AERONET47 pro-
vides retrievals of aerosol properties around the world
spanning more than 20 years, with a high temporal resolution
of up to 15 min. To date, numerous studies have utilized this
data set for characterizing and analyzing aerosol trends and
validating satellite inversions.15,48 In this study, to concurrently
control the quality and quantity of data utilized by the model,
since there are not enough level 2.0 data for use as training
data for modeling purposes, here we selected Version 3.0,

Figure 1. Deep neural networks still face challenges in modeling satellite data captured from different angles.
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spectral deconvolution algorithm (SDA) Level 1.5 (cloud-
screened and quality controlled) fAOD data at 550 nm
(interpolated using the Ångström exponent of fAOD, more
details in Section S3), spanning 2019 to 2022 across the
United States. AERONET sites are evenly distributed across
the eastern and western parts of the United States (Figure S1a)
and so can be fully utilized for model development and
validation.
In addition, we also collected data from the SURFRAD

network for independent model validation. SURFRAD has
strategically established seven in situ measurement sites in
climatologically diverse regions of the United States (Figure
S1a and Table S4), providing AOD data at six wavelengths of
the Multifilter Rotating Shadowband Radiometer (MFRSR).49

Using the SDA algorithm, we calculated the SURFRAD fAOD
at 550 nm. The validation and calibration of consistency
between ground stations are crucial for fAOD verification.50,51

Therefore, we selected nearby stations of the SURFRAD sites
for accuracy comparison (Figure S1b,c). The results indicate
good consistency (R:0.95) and similar trends of variation
between the SURFRAD and AERONET sites, suitable for

subsequent model validation (Figure S1d,e). It is worth noting
that SURFRAD data was not used at any stage of the model’s
training process, ensuring the reliability of the model through
independent validation.
FRAP. The FRAP (Fire and Resource Assessment Program)

annually curates a detailed data set of fire perimeters in
California. Representing the most comprehensive digital record
in the state, FRAP provides precise boundaries with specific
start and end times for each fire, moving beyond broader
county-level data, making it suitable for our study.52 To
guarantee the reliability of the gathered data, FRAP was cross-
referenced with multiple fire-reporting systems. Past studies
often regarded FRAP as the standard product for evaluating
and comparing wildfire-related data sets.53,54 In our study, we
employ the fAOD mean from within these FRAP boundaries
to assess fire emissions.
ADLM. The newly developed ADLM for retrieving fAOD is

capable of informing the model and training the data captured
by imaging from two different angle GOSAT-2 signals (refer to
Figure 2). We have created a module called “angle information
combination” to combine GOSAT-2 angle information into

Figure 2. Overall architecture of the ADLM.

Figure 3. Schematic of the developed angle-dependent deep-learning model. MLP stands for the multilayer perceptron model.
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the corresponding signal data. Generally, to establish a link
between satellite signals and fAOD, it is necessary to transform
images into a structured tabular format. Traditional models
such as the Random Forest (RF) can handle this for single-
angle satellite signals. However, when tabular data include
signals from two different angles, RF cannot discern which data
correspond to the first or second angles despite both angles
observing the same physical feature. This limitation leads to a
superficial understanding of the observational data, hindering
the effective use of information obtained from the dual angles.
The innovative ADLM demonstrates an ability to effectively
address and resolve this pivotal challenge.
Figure 3 shows the detailed architecture of the ADLM.

ADLM combines GOSAT-2 angle information into the
corresponding observational data, then transforms all features
(angle-dependent fusion data) to embeddings for transformer
layers,55 capturing dependencies. It is divided into four major
steps. The first step involves processing the input data using
the corresponding feature tokenizer method to prepare them
for deep-learning computation. The second step utilizes the
designed angle data targeted fusion module to combine the
observed data with angle information. In the third step, the
transformer technique is employed to integrate the combined
data into the global feature [G]. Lastly, [G] is input into a
multilayer perceptron (MLP) model for the inversion of
fAOD.
First, the feature tokenizer is applied to three kinds of input

data to embeddings T: numerical variables (GOSAT-2
measurements), categorical variables (month and season),
and angle variables. This process is described as follows.
Feature tokenizer for numerical variables:

T x w bn n n n
num num num num= × + (1)

where xnumn is the nth numerical input, wnumn is a real number (
) vector d, and bnumn is the nth feature bias.
Feature tokenizer for categorical variables:

T w e bm m m m
cat cat T cat= × + (2)

where eTm is a one-hot vector for the corresponding categorical
feature.
The input numerical and categorical variables are trans-

formed to embeddings:

T T T T TConcat , , ,n n m n m d
num num cat

1
cat

( )= [ ··· ··· ] + × (3)

For the angle data tokenizer, we first designed sine- and
cosine-based transform functions for GOSAT-2 forward and
backward scan angles:

V

V

Concat sin( ), sin( ), sin( ), cos( )
, cos( ), cos( )

Concat sin( ), sin( ), sin( ), cos( )
, cos( ), cos( )

Ang
F F F F F

F F 1 6

Ang
B B B B B

B B 1 6

= [
]

= [
]

×

×

l

m

ooooooooo

n

ooooooooo (4)

where α is the satellite zenith angle, β is the solar zenith angle,
θ is the scattering angle, and F and B are the forward and
backward scans, respectively. The final feature tokenizer for
angle data is

T V w b T,i i i i i d
Ang Ang Ang Ang Ang

1= × + ×
(5)

where i ∈ [1, 2, ···, 6].

In the angle data targeted fusion module, a pointwise
addition is conducted:

T T T

T T T T T T( ), ( ) ( )d d d d
n m

d d

n m d

Fus Ang

1
1

Ang
1

2
1

Ang
1 1

Ang
1

( )

=

= [ + + ··· + ]× × × ×
+
× ×

+ × (6)

A random real number matrix called the global feature
G d1[ ] × is then appended to

T G TConcat ,0 Fus= [[ ] ] (7)

T0 is then processed by the transformer layers:

T F T( )i i i 1= (8)

The final representation of [GT]56 is used for calculating
fAOD by a multilayer perceptron (MLP) model [each hidden
layer has one fully connected (FC) layer, one dropout layer,
and one rectified linear unit (ReLU) layer]:

Relu GfAOD linear(dropout( ( )))T= [ ] (9)

For the model training, we used GOSAT-2 raw variable,
derived variable (Table S5, more details in Section S4), and
AERONET SDA fAOD (at 550 nm) as input data. The data
set spanning four years (2019−2022) was randomly divided
into training (70% of the data), validation (20% of the data),
and testing (10% of the data) subsets. The validation data were
instrumental in determining the model’s hyperparameters.
Table S6 outlines the final hyperparameter values for the
ADLM. Leveraging well-trained models, we generated daily
fAOD products for the years 2019 to 2022 at a spatial
resolution of 460 m, subsequently subjecting them to
evaluation against AERONET fAOD retrievals.
To conduct an independent validation, we employed fAODs

obtained from SURFRAD sites (Figure S1 and Table S4).
Note that the SURFRAD sites chosen for this validation were
deliberately selected to be distinct from those utilized by
AERONET and were not integrated into the modeling process.
Consequently, fAODs from these SURFRAD sites were used
exclusively for independent validation purposes. In addition, to
assess the efficacy of the ADLM in inferring fAOD in regions
devoid of ground-based measurement sites, we employed a
rigorous approach known as site-based 5-fold cross-validation.
In this method, we divided the AERONET sites into five
subsets, each containing a distinct 20% of the available
measurement sites. During each iteration of the cross-
validation, one of these subsets was held out as a test set,
while the remaining 80% were used for model training. This
process was repeated five times, with each subset taking on the
role of the test set once. This ensured a comprehensive
evaluation of the model’s performance and its ability to
generalize to unseen locations.
Radiative Forcing of the fAOD Direct Effect. This study

adopted the method developed by Nakajima et al.57 for
calculating clear-sky fine-mode aerosol radiative forcing
(ARFfAOD) at the top of the atmosphere (ARFTOAfAOD), within
the atmosphere (ARFATMfAOD), and at the surface (ARFSFCfAOD):

A f TSD R

b A f TSD R

ARF (1 )(1 ) / ,

ARF (1 ) / ,

ARF ARF ARF

SFC
fAOD

g
2

TOA
fAOD

g
2

ATM
fAOD

TOA
fAOD

SFC
fAOD

=

= [ ]

= (10)
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where Ag is the surface albedo from the MODIS albedo
product (MCD43A1); S is the incident solar flux at the top of
the atmosphere (1370 W/m2); D is the daytime fraction of the

day; R is the Earth−Sun distance in astronomical units; g and
ω are the AERONET-retrieved asymmetry factor and aerosol
single-scattering albedo, respectively; f = (1 + g)/2 and b = (1

Figure 4. Validation and spatial view of ADLM fAOD. (a, b) Density scatterplots of fAOD derived from the ADLM against fAODs from
AERONET and SRFRAD, respectively, in the contiguous U.S. for the years 2019−2022. Points and error bars represent means and standard
deviations of the ADLM retrievals (vertical lines) and in situ measurements (horizontal lines). The number of samples (N), relation from linear
regression, correlation coefficient (R), root-mean-square error (RMSE), normalized RMSE (NRMSE), and mean absolute error (MAE) are given
in each panel. (c−f) Annual average ADLM fAODs across the contiguous U.S. for the period 2019−2022. Colored dots represent the annual mean
AERONET fAODs.

Figure 5. Satellite-based fAOD under fire conditions. (a) Daily mean fAOD obtained by AERONET (black), ADLM (red), MODIS (yellow),
VIIRS (blue), and MISR (cyan) over California in September 2020. The wildfire-pr1 day in this month California is highlighted by the
shadows.We. (b) Monthly mean fAOD for each product over California in September 2020. The black Error bars represent the standard deviation
of monthly mean. (c−f) Spatial distributions of MISR-, VIIRS-, MODIS-, and ADLM-drieved-fAOD with ground-based observations in California,
September 2020.
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− g)/2; and T is the transmissivity of the atmosphere
calculated here using the Second Simulation of a Satellite
Signal in the Solar Spectrum radiative transfer model.

■ RESULTS
fAOD Derived by the ADLM from GOSAT-2 Measure-

ments. Applying the ADLM to GOSAT-2 data, we calculated
fAODs at a spatial resolution of 460 m across the contiguous
United States from 2019 to 2022. Figure 4a,b shows
comparisons of ADLM-modeled fAODs with Aerosol Robotic
Network (AERONET)-retrieved (validation) and Surface
Radiation Budget (SRFRAD)-retrieved (independent valida-
tion) fAODs, respectively. The validation with AERONET
retrievals (Figure 4a) shows a correlation coefficient (R) of
0.86 and a root-mean-square error (RMSE) of 0.10, with over
64.17% of the data falling within the ± (0.03 + 10%) error
envelope (EE; Figure S2). For the independent validation with
SRFRAD retrievals (Figure 4b), R is 0.75 and the RMSE is
0.09, with 51.50% of the data falling within the EE (Figure S2).
To assess the performance of the ADLM in areas devoid of
ground-based stations, we conducted a more rigorous site-
based 5-fold cross-validation. In each fold, 20% of the sites
were excluded from model training, participating only in the
final testing phase (Figure S3). Test results show that the R of
the ADLM ranges from 0.81 to 0.85, while the RMSE ranges
from 0.09 to 0.12. This indicates that ADLM has excellent
stability and retrieval accuracies in regions without ground-
based stations.

Compared to the conventional machine learning RF model
and ADLM without angular fusion (ADLMno‑angle‑fusion), the
ADLM results show that R increased by 14 and 6% for RF and
ADLMno‑angle‑fusion, respectively, with RMSE decreasing by 23
and 17% (Figure S4). This results in a larger portion of data
falling within the EE, improving by 15% relative to the RF
model and by 8% relative to ADLMno-angle-fusion. For the
RF model, this improvement is particularly pronounced in the
inversion of low fAOD values (below the fourth quartile), with
a substantial increase from 11 to 17% in data falling within the
EE. Figure 4c−f shows the spatial distributions of annual mean
modeled and AERONET-retrieved fAODs from 2019 to 2022,
revealing a high degree of spatial consistency between them.
Figure S5 demonstrates how the ADLM’s 460 m spatial
resolution accurately captures fAOD spatial details. This new
data set offers valuable insights for environmental research,
especially in identifying and characterizing fAOD emission
sources. A standout example is the Marathon refinery in
California, as shown in Figure S5, illustrating the benefits of
this high-resolution fAOD data set. With its 460 m resolution,
it allows for precise pinpointing of fAOD emissions from
specific sources like the Marathon refinery.
Implications for Our Understanding of fAOD under

Fire Conditions. Figure 5a shows ADLM-derived, MODIS-
derived, VIIRS-derived, MISR-derived, and AERONET-
retrieved daily fAODs in California in September 2020. To
ensure consistency in comparisons, we used the temporal
frequency of ADLM fAOD as the standard to match the other

Figure 6. Relative change in fAOD between September 2020 (extreme wildfire period based on Fire and Resource Assessment Program (FRAP)
data) and September 2019 (normal period) for (a) ADLM and (b) VIIRS. Mean (c) and histogram (d) of fAOD estimated by ADLM and VIIRS
during wildfires. Comparison of ADLM and VIIRS fAODs (e) below the 25th percentile (Q1) and (f) above the 75th percentile (Q3) during three
wildfire stages: (1) the first one-third of the entire wildfire period, (2) the middle stage of the next one-third, and (3) the final last one-third.
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products, considering samples with spatial coverage greater
than 50% as valid. In this month, California witnessed the
largest wildfire recorded in the U.S., burning more than 1.2
million acres. AERONET shows that the average fAOD value
reached ∼0.43 (Figure 5b). However, MODIS-derived, VIIRS-
derived, and MISR-derived fAOD values were significantly less,
with a monthly average value of 0.23, 0.21, and 0.19,
respectively (47, 51, and 56% underestimation relative to the
AERONET fAOD). On the intensely wildfire-affected day of
September 11, 2020, the VIIRS-derived fAOD (0.75) was less
than the AERONET fAOD (1.6) by 53% (Figure 5a). By
contrast, the ADLM-derived fAOD (1.27) was much closer
under wildfire conditions. In comparison with AERONET
data, the Multiangle Imaging Spectroradiometer (MISR)
demonstrated a good correlation (R = 0.69, Figure S6),
consistent with previous research highlighting its multiangle
observational capability and superior aerosol size estima-
tion.46,58 However, Figure 5a reveals that MISR tends to
significant underestimation in situations with high fAOD. This
underestimation is also corroborated by Figure S6, which
reveals that a significant number of MISR fAOD values fall
below the 1:1 line, indicating a severe undervaluation. These

underestimation issues in the official fAOD products of the
MODIS, VIIRS, and MISR arise not only because of the
inherent limitations of the algorithms employed but also
because of the spatial resolution, which is a contributing factor
to the observed underestimation. To our knowledge, most
official data sets produce fAOD products at kilometer-level or
coarser spatial resolutions, such as MODIS’s 3 km, VIIRS’s 6
km, and MISR’s 4.4 km fAOD data (Figure 5c−e). The use of
coarse-resolution data sets in quantitative analyses may
introduce a significant degree of uncertainty, particularly
where small-scale wildfire sources remain challenging to
detect.59 The newly improved fAOD data set, offering a
detailed 460 m resolution, more effectively illustrates the
spatial distribution and detailed analysis of fAOD (Figure 5f).
This advancement is clearly demonstrated in the cases of
California and Montana, as shown in Figure S7. The monthly
average results from these two regions exhibit noticeable cyclic
fluctuations in fAOD values, with higher levels occurring
during the summer, exceeding 0.2, and lower levels occurring
during the winter, typically below 0.1. Especially during
periods of intense wildfires, the monthly average fAOD values
in California and Montana exceeded 0.3 and 0.4, respectively,

Figure 7. Spatial distributions of ADLM-based fAOD radiative forcing during the California wildfires in September 2020 at the top of the
atmosphere (a), within the atmosphere (b), and at the surface (c). (d−f) Mean (top) and distribution density (bottom) of fAOD ARFTOA,
ARFATM, and ARFSFC estimated by ADLM, VIIRS, MODIS, and MISR during September 2020.
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which represents a 3- to 4-fold increase compared to the same
period, underscoring the significant impact of wildfires on
atmospheric aerosol loading. Additionally, the data set’s
precision allows for the detection of smoke from active fires
at specific locations, such as those illustrated in Figure S8,
including the Silver Peak Wilderness and Cleveland National
Forest. This enhanced capability facilitates the effective
detection and monitoring of fAOD emissions, even from
small-scale fire events.
The figure highlights the underestimation of VIIRS fAOD

products compared to ADLM in California. We excluded
MODIS fAOD from this comparison due to its lower accuracy
compared to VIIRS fAOD in validation. Additionally, the
MISR fAOD was not incorporated into the comparison
because its temporal resolution of 9 days is not sufficient to
discern fAOD variations across different wildfire periods.46 For
the whole regional scope of California, we chose two distinct
periods, September 2019 and September 2020, representing
normal and fire active years, respectively. The occurrence of
wildfires led to significant surges in fAOD emissions in 2020,
four to six times higher than that in a normal year like 2019,
especially in California’s coastal regions (Figure 6a). This is in
contrast to the VIIRS product showing only a moderate rise
(Figure 6b). Furthermore, we conducted a comparative
analysis of fAOD values for each fire event during September
2020 in California by fire boundary data from the Fire and
Resource Assessment Program (FRAP), specifically across
various wildfire periods. Wildfires are equally segmented into
three distinct stages throughout their lifecycle record by FRAP,
which enables us to analyze how fAOD fluctuates from the
initial ignition to the peak burning phase and finally to the
decline in fire activity. Figure 6c shows that relative differences
between VIIRS- and ADLM-based mean fAOD (|VIIRS fAOD
− ADLM fAOD| ÷ ADLM × 100%) reach up to 29% (mean
ADLM and VIIRS fAOD values equal to 0.21 and 0.15,
respectively). Notably, VIIRS yields lower fAOD values at the
lower 25th percentile (Q1). Conversely, for values exceeding
the 75th percentile (Q3), the ADLM captures higher fAOD
values. The underestimation in VIIRS fAOD retrievals is most
pronounced during the first stages of wildfires, with high values
(>Q3) underestimated by 50% and low values (<Q1)
underestimated by 38% (Figure 6e,f). We employed FRAP
data to examine the areal coverage of fire-affected areas in
California from 2019 to 2022. As shown in Figure S9, the
highest frequency of fires occurred in 2020 when the VIIRS
fAOD was less than the ALDM fAOD by 78%, while the
overall difference was 75% for the four years considered,
suggesting that VIIRS may not be capturing the full extent of
fAOD associated with these fires. This underestimation can
have implications for pollution assessments and understanding
of the climate impact of wildfires.
Figure 7a−c shows mean ADLM-derived fAOD direct

radiative forcing at the top of the atmosphere (TOA), at the
surface (SFC), and within the atmosphere (ATM) over
California for September 2020. Due to a major contribution by
wildfire emissions, average fAOD net radiative effects are
negative (ADLM ARFTOA = −20.9 W/m2, Figure 7 d),
resulting in TOA cooling over California. There is also cooling
at the surface, with mean ADLM ARFSFC = −38.1 W/m2
(Figure 7e). By contrast, within the atmosphere, fAOD has a
warming effect (mean ADLM ARFATM = 17.3 W/m2, Figure
7f), indicating an increase in radiative heating in the
atmospheric column. When compared to the ADLM out-

comes, the negative radiative effects obtained by MODIS,
VIIRS, and MISR fAODs at the TOA are reduced by
approximately 14.4, 30.1, and 46.9%, respectively. This relative
underestimation of negative impacts is also evident in the
ARFSFC comparisons. Previous studies have reported a similar
magnitude of ARFSFC from biomass-burning aerosols as VIIRS,
i.e., −15.960 to −17.1 W/m2.61 In a past study, Chemke et al.62
demonstrated that direct aerosol radiative forcing influences
local thermodynamic and dynamic changes by altering surface
temperature, further regulating atmospheric circulation. This
underestimation could exacerbate uncertainties in under-
standing climate change. Additionally, the warming effect in
the atmosphere as observed through MODIS, VIIRS, and
MISR fAODs is noticeably weaker than that detected with the
ADLM fAOD, showing decreases of 15.6, 24.1, and 43.9% in
their respective warming effects. From a spatial perspective,
significant disparities in ARF between ADLM, MODIS (Figure
S10), VIIRS (Figure S11), and MISR (Figure S12) are
observed. Particularly in wildfire-affected regions, the MODIS,
VIIRS, and MISR fAOD negative effect is markedly weaker
than that of the ADLM fAOD, with ARFTOA and ARFSFC
differing by >−30 W/m2. The atmospheric positive effect is
also considerably less intense compared to the ADLM fAOD,
with ARFATM differing by >+20 W/m2.

■ DISCUSSION
GOSAT-2 is a dual-angle satellite instrument designed to
capture the same scene from two different viewing angles
simultaneously. It provides additional information about
aerosol properties from the angular distribution of scattered
light. We developed an ADLM to take advantage of the rich
information to estimate fAOD. The model was applied to
generate a new fAOD data set over the contiguous United
States at a 460 m spatial resolution. Compared with using the
traditional RF machine-learning model, there are fewer biases
in ADLM-based fAODs, with the RMSE decreasing by 23%
and more data falling within the EE (a relative improvement of
15%). Machine-learning models such as Random Forest (RF)
lack inherent awareness of angular information, treating each
input feature independently. This poses challenges in explicitly
informing the model about the angular diversity of data,
especially evident with dual-angle GOSAT-2 data, where
aerosol properties measured at different angles exhibit strong
interdependencies. Traditional models may overlook crucial
angular information, resulting in biased estimations of the fine
aerosol optical depth (fAOD). In contrast, the angle-depend-
ent deep-learning model (ADLM) explicitly considers the
angular diversity inherent in dual-angle observations, leverag-
ing GOSAT-2’s rich information to capture and model
interdependencies among aerosol properties measured at
different viewing angles. This enables ADLM to make more
accurate fAOD estimations, surpassing the RF models. The
validation and comparison results from ADLM underscore the
superior performance achieved through our novel training data
strategy, positioning it as a valuable and effective technique for
improving the precision of fAOD retrievals. Additionally, the
coarse spatial resolution fAOD product has long been criticized
by researchers for its inability to accurately represent the
complexities of fires, dust, and environmental structures on the
Earth’s surface.63 Yet, the high spatial resolution of ADLM
fAOD at 460 m equips us with the ability to gain deeper
insight.
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We found that the current MODIS, VIIRS, and MISR
official products significantly underestimate wildfire-associated
fAOD. Compared to AERONET, MODIS, VIIRS, and MISR
underestimated fAOD by 47, 51, and 56%, respectively, during
extreme wildfire events in California in September 2020.
Particularly in daily fAOD monitoring, the underestimation of
VIIRS results can reach 60% (Figure S6). This is a crucial
factor contributing to our finding that fAOD ARF exhibits
significantly greater cooling at the TOA and at the SFC and
more warming within the ATM during active wildfire periods
than what current VIIRS and MISR data indicate. Our
estimates of atmospheric warming due to smoke using ALDM
retrievals are considerably higher than those using MODIS,
VIIRS, and MISR retrievals, with an increase in ARFATM of
+15.6, + 31.2, and +43.9%, respectively. Furthermore, the
cooling effect of wildfire fAOD at the TOA and at the SFC is
significantly stronger than that represented by MODIS, VIIRS,
and MISR fAODs, with both ARFTOA and ARFSFC increasing
by approximately +20%. Zhao et al. have reported that once |
ARFSFC − ARFATM| exceeds 55 W/m2, the atmospheric-
boundary-layer (ABL) structure tends to quickly stabilize.64

Our results suggest that most |ARFSFC − ARFATM| values of
wildfire fAOD are greater than 55 W/m2, so a more stable ABL
may be expected than what VIIRS and MISR fAOD estimates.
This could provide useful information for relevant biomass-
burning-environment model simulations.
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