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Abstract— The ground-based microwave radiometer (MWR)
retrieves atmospheric profiles with a high temporal resolution for
temperature and humidity up to a height of 10 km. Such profiles
are critical for understanding the evolution of climate systems.
To improve the accuracy of profile retrieval in MWR, we devel-
oped a deep learning approach called batch normalization and
robust neural network (BRNN). In contrast to the traditional
backpropagation neural network (BPNN), which has previously
been applied for MWR profile retrieval, BRNN reduces overfit-
ting and has a greater capacity to describe nonlinear relationships
between MWR measurements and atmospheric structure infor-
mation. Validation of BRNN with the radiosonde demonstrates
a good retrieval capability, showing a root-mean-square error
of 1.70 K for temperature, 11.72% for relative humidity (RH),
and 0.256 g/m3 for water vapor density. A detailed comparison
with various inversion methods (BPNN, extreme gradient boost-
ing, support vector machine, ridge regression, and random forest)
has also been conducted in this research, using the same training
and test data sets. From the comparison, we demonstrated that
BRNN significantly improves retrieval accuracy, particularly for
the retrieval of temperature and RH near the surface.

Index Terms— Deep learning, humidity, microwave radiometer
(MWR), temperature.

I. INTRODUCTION

MONITORING the vertical profiles of atmospheric tem-
perature and humidity is of great interest in under-

standing the evolution of climate systems [1]. Temperature
and humidity structure determine atmospheric stability [2] and
these meteorological quantities are also important parameters
for numerical weather prediction models [3]. In addition to
information about the temperature and humidity profiles, their
temporal evolution is particularly valuable in atmospheric
boundary layer studies [4].
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Currently, atmospheric vertical profiles of temperature and
humidity can be obtained from the global radiosonde net-
work [5]. Although the data acquired from this source are
highly accurate, observations are limited by their cost and low
temporal resolution (mainly once or twice a day), which is
insufficient to capture the diurnal variation of the atmospheric
structure [6]. Another way to obtain the profile information
is by the use of passive satellite-based remote sensing [7].
However, the signal received by the satellite combines both
surface and atmosphere signals; it is difficult to separate them
and the surface signal could cause substantial errors when
retrieving profiles near the ground [8]. Massaro et al. [6]
indicated that passive satellite-based remote sensing could not
provide sufficiently accurate profile data near ground level,
so it was not recommended for use for boundary layer studies.
To overcome this limitation, researchers have found that the
ground-based microwave radiometer (MWR) is capable of
providing valuable information on atmospheric profiles in the
lower troposphere [9]–[11]. The advantages of atmospheric
vertical profiles—such as temperature or humidity profiles—
derived from MWR are its continuous measurements, which
can provide high temporal resolution (1 min or less) data, and
its ability to function in most normal weather conditions except
on rainy days or other extreme conditions [6]. Thus, the MWR
can capture a complete process in a weather event [12].

In the last decade, to improve retrieval accuracy, methods
for MWR have rapidly developed: these include linear statis-
tical inversion [13], the optimal estimation method [14], the
one-dimensional variational (1D-VAR) retrieval method [15],
and neural networks [12]. Among these methods, neural
networks can offer the best performance for the solution of
nonlinear relationships in the model, which is important for
the retrieval of humidity profiles [16]. Measure et al. [17]
first proposed a two-layer neural network for the inversion of
radiometric measurements. Subsequently, Churnside et al. [18]
extended this neural network to three layers (one output layer,
one hidden layer, and one input layer) with the backpropa-
gation algorithm. Even now, the three-layer backpropagation
neural network (BPNN) is a very popular method for MWR, to
retrieve atmospheric vertical profiles [3], [12], [19]. However,
these BPNN models have only a single hidden layer and their
capacity to model highly varying functions defining nonlinear
structures is much less than using multiple hidden layers [20].
In addition, a traditional BPNN does not consider the dis-
tribution of the input changes of each layer during training,
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Fig. 1. Data measurement location.

as the parameters of the previous layers change, which slows
down the training process [21]. This time-consuming problem
is particularly serious when the amount of data is large. Last
but not least, BPNNs for MWR usually employ a sigmoid [19]
or tansig activation function [12], but Wang et al. [22] indicate
that these common nonlinear activation functions can cause
gradient vanishing and exploding problems in the training
process.

In this article, we propose a deep learning approach called
batch normalization and robust neural network (BRNN),
to retrieve temperature and humidity profiles using data from
a ground-based MWR. A comprehensive discussion of this
method and a comparison with BPNN, extreme gradient
boosting (XGBoost), support vector machine (SVM), ridge
regression, and random forest (RF) are also presented.

II. DATA AND METHODS

A. MWR Data

In this article, the data were measured by an MWR
located in the Beijing Nanjiao Meteorological Observatory
(39.81◦ N, 116.48◦ E), China. The MWR used in this research
was the Humidity And Temperature PROfiler (HATPRO;
Radiometer Physics GmbH, Germany). The RPG-HATPRO
is a 14-channel ground-based passive MWR, including
seven water vapor absorption channels (K-band) between
22 and 30 GHz and seven oxygen absorption (V-band) chan-
nels between 51 and 59 GHz. The brightness temperatures
measured by the RPG-HATPRO have a temporal resolution
of 1 s [2], [5], [6], [12]. Furthermore, this RPG-HATPRO
contains sensors to measure surface temperature, relative
humidity (RH), and pressure. In the experimental period,
we performed a liquid nitrogen calibration every six months;
the details of the calibration process can be found in [23]. The
overall brightness temperature accuracy in this RPG-HATPRO

is 0.5 K. As shown in Fig. 1, the RPG-HATPRO was
installed on the roof of the laboratory cabin, with no high
buildings nearby. There is a meteorological sensor onboard
the instrument to collect the surface pressure, temperature,
and RH data. The instrument also contains a zenith-pointing
infrared radiometer to measure the cloud-based temperature.
The radiosonde data were measured by an L-band GTS1
digital radiosonde at the same location; the radiosonde was
launched twice a day, at 11:15 and 23:15 UTC during the
research period. The collected MWR and radiosonde data from
2017 to 2018 were used in the training process and the data
from January to May 2019 were applied for validation.

B. Preprocessing of the Data

First, the brightness temperatures from the MWR and the
measurements from the radiosonde were checked by specific
rules to assure the data quality. For the test and valida-
tion period from January to May 2019, only data collected
in clear-sky conditions were considered sufficiently reliable.
In order to avoid incorrect retrieval results, the data col-
lected in cloudy, rainy, or other such uncertain conditions
were removed. The radiosonde data were used to determine
the weather conditions and estimate the cloud parameters.
Theoretically, cloud formation usually occurs when the RH
reaches 100%. However, in actual atmospheric conditions,
clouds can form because of the existence of cloud conden-
sation nuclei when RH reaches around 85% [24]. In the
radiosonde data: 1) if the RH was greater than 84% from
the ground to 600 m, the measured data were classified as
rainy conditions, and if the RH was less than 84% near the
surface but greater than 84% in the upper atmosphere, the data
were classified as cloudy conditions [12] and other data were
classified as clear sky conditions; and 2) the brightness tem-
perature was in the 2.7–330 K range [6]. For the radiosonde
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Fig. 2. Schematic of the BRNN.

measurements, it was checked that: 1) pressure was in the
1–1050 hPa range; 2) temperature was in the 210–330 K
range; and 3) surface pressure was greater than 500 hPa [6].
In this research, 84% was selected as the threshold on RH
for judging rain or cloud occurrence, following the study by
Wang and Rossow [24]. The rain information provided by
rain sensors onboard the MWR instrument was also used as a
reference. A total of 679 quality-assured MWR matched with
radiosonde sounding data were used as the training samples
between 2017 and 2018, and 88 quality-assured test samples
from 2019 were used for validation. Before the data were input
to the BRNN for training or prediction, each input data item
was normalized by the Z -score method [25]

Normalized(xi ) = xi − mean(x)

std(x)
(1)

std(x) =
√√√√ 1

n − 1

n∑
i=1

[xi − mean(x)]2. (2)

C. Batch Normalization and Robust Neural Network

The developed neural network, BRNN, consists of four
layers (see Fig. 2): one input layer, two hidden layers, and
one output layer. The input layer receives the collected data,
which comprise 17 features. Among these, 14 features consist
of the brightness temperature data from the RPG-HATPRO’s
14 channels and three features are the surface pressure,
temperature, and RH measured by the RPG-HATPRO. These
features are then input to a batch normalization (BN) layer.
The purpose of the BN layer is to standardize the distribution
of the layer inputs x as the training progresses, which has the
effect of stabilizing the learning process [21].

In BRNN, each of the two hidden layers includes one
fully connected layer, one rectified linear unit (ReLU) layer,
one BN layer, and one dropout layer. In the fully connected
layer, the number of neurons is 256. We used the ReLU as
the activation function in this study because it can overcome
the problems of saturation and vanishing gradients [26] and
is much faster than the traditional activation functions used
in the BPNN, such as the sigmoid activation function [21].
To prevent overfitting, we introduced a dropout layer to each
hidden layer. The dropout method has been demonstrated to
significantly reduce overfitting and improve the performance

of neural networks [27]. The feed-forward operation in this
hidden layer of BRNN can be described as

ỹm = rm × ym (3)

zm+1
i = W m+1

i ỹm + bm+1
i (4)

Pm+1
i = BN

{
f
(
zm+1

i

)}
(5)

where m is the index of the hidden layer; zm is the vector of
inputs into layer m; ym is the vector of outputs from layer m
(y0 is the vector of outputs from the input layer); W m and bm

are the weights and biases at layer m, respectively; Pm+1
i is

the output from hidden layer m +1 at the neuron node i ; rm is
a vector of independent Bernoulli random variables, each of
which has probability p of being 1 and probability 1 − p of
being 0; ỹm is the thinned vector of ym ; and BN{ } is the BN
function, the details of which can be found in [21]. The f ( )
function is the ReLU activation function

f (x) =
{

x, x > 0

0, x < 0.
(6)

In the output layer, the input data will first be processed by
a fully connected layer and a sigmoid layer. We introduce the
sigmoid layer to scale the output to a reasonable range in both
training and prediction processes. For example, the normal
range of the RH is 0%–100%.

The final output result of the BRNN is the 47-feature
vertical profiles of either the temperature or humidity corre-
sponding to different heights. The vertical resolution in this
study is every 100 m between the heights of 0 and 1 km and
every 250 m between the heights of 1 and 10 km.

D. Other Retrieval Techniques

In addition to our proposed BRNN method, described
earlier, we used several other machine learning models for
the comparison.

1) XGBoost is a gradient boosting-based integrated learn-
ing algorithm proposed by Chen and Guestrin [28].
XGBoost can automatically use central processor (CPU)
multithreading to carry out parallel computation and is
an efficient algorithm. Pan [29] developed an XGBoost
algorithm to forecast hourly PM2.5 (particulate matter
with an aerodynamic diameter less than 2.5 μm) concen-
trations in Tianjin by analyzing air quality monitoring
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data. Zhai and Chen [30] also applied XGBoost in their
stacked ensemble model to predict and analyze daily
average PM2.5 concentrations in Beijing and concluded
that their model was highly interpretable and general-
izable in forecasting atmospheric pollution. However,
the applications of the XGBoost algorithm for the
retrieval of meteorological profiles using MWR are still
few in number.

2) The BPNN is a multilayer feedforward neural network
that targets the minimum squared error of prediction
and adjusts the weight and threshold of the network to
approximate the expected value [31]. Solheim et al. [32]
analyzed various retrieval methods by using synthetic
data and found that the neural network method out-
performed other methods for retrieving temperature and
water vapor profiles from radiometric data. Even now,
BPNN is one of the most commonly used methods for
atmospheric temperature and humidity profile retrieval
from ground-based MWRs. In this study, the structure
of the BPNN used is the same as in [12] in clear sky
conditions.

3) SVM was first proposed by Vladimir [33]. It has many
unique advantages in solving small sample, nonlinear,
and high-dimensional pattern recognition problems, and
can be applied to function fitting and other machine
learning problems [34]–[36]. The SVM method is based
on the Vapnik–Chervonenkis dimension and the struc-
tural risk minimization principle of statistical learning
theory. The basic idea of SVM is to find the optimal
hyperplane between the positive samples and negative
samples [37]. The SVM method has also been applied to
atmospheric environment research [37]. Zhang et al. [39]
used SVM to set up a dynamic model that improved
the accuracy of forecasting PM2.5 concentrations 1 h in
advance. However, SVM methods have rarely been used
for meteorological parameter profile inversion based on
MWR.

4) RF is a powerful machine learning method that con-
structs ensembles of unpruned classification or regres-
sion trees generated by the selection of random features
in tree induction and bootstrap samples of training
data. It performs well when the number of variables
is much larger than the number of observed values
and can handle high-dimensional data and complex
interactive structures without feature selection. It has
high training speed and easy parallelization of calcu-
lation, and can return highly correlated and important
characteristic variables. The RF algorithm has often been
applied to atmospheric environment research in recent
years [40], [41].

5) Ridge regression is a biased estimation regression
method dedicated to collinear data analysis, particularly
for ill-conditioned data, for which it is stronger than the
least squares method. Compared with the least squares
method, ridge regression abandons the unbiased require-
ment from the perspective of reducing the accuracy and
loss of partial information, and still obtains reliable and
realistic estimates [42].

Fig. 3. (a)–(c) BRNN retrievals for temperature, WVD, and RH, respectively,
as a function of radiosonde data from all 47 atmospheric vertical layers. The
black solid line is the fit line from linear regression. The regression equations
and coefficients of determination (R2) are given, as well as the number of
data points (N = 4048) and the RMSEs. Colored areas show the density of
data points. (d)–(f) Histograms of the BRNN bias (BRNN retrieval minus
radiosonde). The red dashed line is the zero line.

III. RESULTS

A. Validation of BRNN With Radiosonde

To test the performance of the neural network proposed
in this study, results from BRNN and from the radiosonde
were compared. Fig. 3(a)–(c) shows the BRNN temperature,
water vapor density (WVD), and RH as a function of the
radiosonde measurements from all 47 atmospheric vertical
layers up to 10 km. High kernel density values with red color
show where most of the data lie. As shown in Fig. 3(a),
the linear regression relation between the BRNN tempera-
ture and radiosonde temperature has a slope of 0.98 and a
y-intercept of 6.5, with a coefficient of determination (R2)
of 0.99 and a root-mean-square error (RMSE) of 1.70. For
WVD [see Fig. 3(b)], the R2 is 0.90 and the slope is 0.9 with
an RMSE of 0.26. From Fig. 3(a) and (b), we observe that
the temperature and WVD from BRNN agree well with the
radiosonde measurements. In contrast to the temperature and
WVD validation, the result of RH is more scattered. Fig. 3(c)
shows that the R2 is 0.44 and the RMSE is 11.72. The
frequency distribution of the bias (radiosonde minus BRNN
retrieval) is plotted in Fig. 3(d)–(f). Candlish et al. [11]
indicate that, if the data set is sufficiently large and the errors
are random, the frequency distributions of the bias should be
normal and centered on 0. Our results are consistent with this
phenomenon: all biases of BRNN retrievals have a noticeable
normal distribution with a median close to 0 (the biases for
temperature, WVD, and RH are −0.0014, 0.007, and −0.001,
respectively). Fig. 3 shows that the results for RH are not
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TABLE I

COMPARISON OF THE PERFORMANCE OF DIFFERENT METHODS

as good as those for temperature and WVD. Miacci and
Angelis [46] indicated that humidity profiles have expected
errors of approximately 5%–25% depending on altitude, with
the larger error at high altitudes due to the radiometer’s spatial
resolution.

B. Comparison of BRNN With Other Retrieval Techniques

Table I illustrates the retrieval performance of the six meth-
ods for temperature, RH, and WVD retrieval. For temperature
retrieval, the R2 for all of the methods is above 0.96, which
shows that the temperature obtained by all six methods is
highly correlated with the radiosonde data. Although the
methods have little difference in temperature retrieval, in terms
of R2, only the BRNN method can make the RMSE less
than 2 K. In the results of RH, the R2 for the six methods
is obviously decreased along with the R2 of the temperature.
Among these methods, BRNN achieves the best accuracy in
terms of RMSE (11.72), standard deviation (StDev) (11.44),
and mean average error (MAE) (0.074), in comparison with
the radiosonde. It is noticeable that the SVM and BPNN
methods also perform quite well for RH retrieval, with RMSE
of 13.17 and 13.79. For WVD, BRNN also achieves good
retrieval ability, with an RMSE of 0.256 and an R2 of 0.90.
In addition to BRNN, the XGBoost method performs better
than the remaining methods in terms of RMSE (0.285),
compared with SVM (0.287) and BPNN (0.288). The value
of R2 (0.88) is the same as for the SVM, BPNN, and
XGBoost methods, indicating that these three methods are
comparable for WVD retrieval. However, as shown in Fig. 4,
the BPNN and SVM can output negative values for WVD.
Because BPNN and SVM do not limit the WVD range in
the training and prediction processes, it is not surprising that
anomalous results are output. Nevertheless, this limitation has
been improved in BRNN by introducing a sigmoid layer to

Fig. 4. Histograms of the WVD obtained by radiosonde, BRNN, BPNN,
and SVM. The blue dashed line is the zero line.

the output layer. From Fig. 4, we observe that the frequency
of the BRNN-based result agrees well with the radiosonde
result and the BRNN produces no extreme values. As shown
in Table I, BRNN and XGBoost achieve similar performance
for temperature and WVD retrieval, even though there are fun-
damental differences between these two algorithms. XGBoost
is a tree-based model, which is an interpretation-focused
method, whereas neural network-based BRNN allows for the
encoding of more structural information and is more suitable
for large amounts of training data. According to Table I,
the performance of the ridge regression and RF methods—
for all three parameters—seems unsatisfactory compared with
the other methods, indicating that these two methods may not
be suitable for MWR retrieval of temperature and humidity
profiles. Cule and Iorio [47] indicated that ridge regression
can work well when the multicollinearity problem prevails.
However, the nonlinear relationships found between variables
in MWR-based humidity retrieval [16] make this unsuitable
for ridge regression.

C. Bias and RMSE Variation With Height

The temperature profile retrieval bias of the various tech-
niques is presented in Fig. 5. The red dots represent the
mean value of the bias and the short blue lines inside the
box represent the median. The blue shadow means ±1-K
bias of temperature. The left and right boundaries of the
box contain the data from the first quartile to the third
quartile. The whiskers (blue dotted lines) extend from each
quartile to the minimum or maximum of the bias. As shown
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Fig. 5. Temperature retrieval bias (The retrieval minus radiosonde). The
means, medians, and 66% (1 − σ) intervals are shown as red dots, horizontal
lines within the boxes, and the boxes themselves, respectively. The blue
shadow means ±1-K bias of temperature. (a)–(f) Retrieval bias of the BRNN,
XGBoost, BPNN, RF, SVM, and Ridge.

in Fig. 5(a), most of the BRNN-based temperature bias is
within ±1 K below 3 km, indicating that BRNN achieves
a high accuracy for retrieving temperature profiles near the
surface. At heights between 3 and 10 km, the length of
the box for the BRNN method is shorter than for the other
methods [see Fig. 5(b)–(f)], showing that the bias of derived
temperature is more concentrated near the mean and median.
In addition, the mean and the median of the temperature
bias by the BRNN method are very close, showing that
the temperature bias of BRNN is more uniform and cen-
tralized. For the fluctuation trend up to a height of 10 km,
the mean temperature bias obtained by BRNN is positive
near the surface, decreases with height, and becomes negative
above 3.5 km; this is similar to the trends of [2] and [43].
Cimini et al. [16] also found that the retrieval temperature in
the upper atmosphere has a negative bias of 1–2 K. At the
middle layer (5.5 km), the negative mean bias reaches its
maximum and then gradually decreases to 0. In Fig. 5, the bias
of RF shows a large scatter over all height layers. This is
because for RF, the range of predictions is bound by the
highest and lowest values in the training data. This becomes
problematic in situations where the training and prediction
inputs differ in their range and/or distributions. This so-called
covariate shift is difficult for most models to handle, but it is
especially so for RF [48].

Fig. 6 shows the bias of RH for the six methods; this is
the same as Fig. 5 but the blue shadows show the bias range
of ±8%. In all of the six methods, the mean bias is usually
close to the median in the lower levels, but drastically deviates

Fig. 6. Same as Fig. 5 but for RH retrieval bias. The blue shadow means
a bias of ±8% of the RH. (a)–(f) Retrieval bias of the BRNN, XGBoost,
BPNN, RF, SVM, and Ridge.

from the median above 2 km. The RH bias of the BRNN
method remains within ±8% below 3 km, and its interquartile
range is almost the smallest of all six methods at each height.
As for SVM, BPNN, and XGBoost, their bias also remains
in the range of ±8% near the surface, but the interquartile
range is much larger than BRNNs and the maximum bias
exceeds 30%.

Fig. 7 shows the bias of the derived WVD; this is the
same as Fig. 5 but the blue shadows show the bias range of
±0.15 g/m3. From Fig. 7, we observe that the bias of ridge
regression and RF vary much more than the bias of the other
four methods. The deviations of the bias in BRNN, XGBoost,
BPNN, and SVM appear mainly in the lower atmosphere and
gradually decrease above 5 km. This is consistent with [9]
and [43], which found that, in water vapor profile retrieval,
there were mainly positive deviations in the lower atmosphere,
which tended to 0 at the top of the atmosphere.

In Fig. 8, we plot the RMSE of the temperature, RH, and
WVD profiles resulting from BRNN, XGBoost, BPNN, and
SVM at different heights, using the radiosonde observation as
the reference. Because the RF and ridge regression retrieval
performance seem poor, as mentioned earlier, we do not
compare their results. For the temperature, using the BRNN
method, the RMSE below 2 km is around 1 K and remains
less than 2 K below 8 km; this is apparently less than the
RMSE of XGBoost, BPNN, and SVM. The XGBoost method
has a better accuracy than SVM and BPNN below 2 km, but
has a large RMSE in the upper atmosphere (above 3.5 km).
From the figure, the temperature retrieval results in BRNN
are comparable to the studies of [5] and [6] in the lower
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Fig. 7. Same as Figs. 5 and 6 but for WVD retrieval bias. The blue shadow
means a bias of ±0.15 g/m3 of the WVD. (a)–(f) Retrieval bias of the BRNN,
XGBoost, BPNN, RF, SVM, and Ridge.

atmosphere (below 4 km) and are even slightly better than
those above 4 km: the RMSE of BRNN remains less than
1.5 K at 5.25 km and 3.5 K at 10 km. For RH, the RMSE
of BRNN can be controlled at about 5% below 1 km. The
XGBoost method also performs well in the lower atmosphere,
but its RMSE is significantly larger than the others from
3 to 7 km. The distribution of RMSE for all four methods from
surface to 10 km is similar to the results of Che et al. [12]:
the RH RMSE tends to increase with height and the maximum
deviation occurs in the middle atmosphere. In terms of WVD,
the situation is exactly the opposite: the RMSE of the lower
layers is larger and that of the higher layers is smaller. The
superiority of the BRNN method is that its RMSE value
does not exceed 0.4 g/m3 from the surface to 10 km; in
particular, its RMSE is about 0.35 g/m3 from the surface up
to 3.5 km and then decreases to below 0.1 g/m3 at 8 km.
Among the remaining three methods, the performance shows
little variation, except for the SVM method, which has the
largest error in the layer near the ground. Therefore, from
the overall characteristics of the RMSE of the three variables,
the temperature RMSE is mostly concentrated in the upper
layer, the high RMSE of RH mainly occurs in the middle
layer, and the high RMSE of WVD mostly appears in the
lower layer; this is in accordance with the situation found by
Cimini et al. [9] and Sanchez et al. [43].

D. Case Analysis

To illustrate and compare the outcomes of BRNN and
other retrieval techniques, we use two cases as examples.
The radiosonde measurements are used as standard and com-
pared with these methods. A comparison of the derived

Fig. 8. Profile retrieval RMSEs for (Left) temperature, (Center) RH,
and (Right) WVD, with respect to radiosonde, for BRNN, XGBoost, BPNN,
and SVM techniques.

temperature profiles is presented in Fig. 9. On January 3,
2019 (23:15 UTC), BRNN shows only a small difference with
the radiosonde data below the height of 5 km. In particular,
between the heights of 3 and 5 km, BPNN, SVM, and
XGBoost all underestimate the temperature but BRNN fits
it well. On May 4, 2019 (11:15 UTC), the four methods
differ slightly from the radiosonde measurements from the
ground to a height of 8 km. However, above 8 km, the dif-
ference increases noticeably. Overall, from these two cases,
we observe that the deviation of BRNN is less than the
deviations of the other three methods near the surface.

Fig. 10 shows the results of WVD profiles by four different
methods. The difference between the derived WVD profiles
and the radiosonde is larger than that for temperature. In con-
trast to temperature retrieval, the agreement between BRNN
and radiosonde WVD is less near the surface than in the
upper atmosphere. Although the deviation is increased in all
methods, the deviation for BRNN is clearly lower than for
BPNN, XGB, and SVM.

Fig. 11 shows the derived RH profiles on April 2, 2019,
and March 14, 2019. In these two cases, the profiles based
on BRNN follow the RH vertical structure measured by
the radiosonde closely. Although the RH profiles derived by
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Fig. 9. Comparison between the temperature profiles generated using the
BRNN, SVM, BPNN, and XGBoost retrieval methods and the radiosonde at
(a) and (b) 23:15 UTC on January 3, 2019, and (c) and (d) 11:15 UTC on
May 4, 2019.

BPNN and SVM still approximately follow the patterns of the
radiosonde data, the deviation is clearly larger than BRNN’s.
Of the four methods, the XGBoost data are in the worst
agreement with the radiosonde data, showing little ability to
retrieve the RH vertical structure.

IV. DISCUSSION

NNs with a single hidden layer have been developed to
retrieve temperature and humidity profiles in MWR for more
than 20 years [18]. Although some improvements have been
made for this type of NN to achieve a higher accuracy [12], its
capacity to describe nonlinear relationships is much less than
an NN using multiple hidden layers [20]. However, nonlinear
relationships are very important in the humidity retrievals
and Cimini et al. [16] indicate that MWR-based humidity
could be improved using nonlinear minimization. As shown
in [43] and [12], the correlation between the MWR-derived
humidity and the radiosonde data is much less than the
correlation of temperature. Thus, it is important to use a

Fig. 10. Comparison between the WVD profiles generated using the
BRNN, SVM, BPNN, and XGBoost retrieval methods and the radiosonde at
(a) and (b) 23:16 UTC on March 20, 2019, and (c) and (d) 11:17 UTC on
April 30, 2019.

better NN structure to improve the retrieval accuracy. In this
research, to extend the NN for nonlinear relationship model-
ing, we introduced two hidden layers in the proposed BRNN.
However, traditional BPNNs for MWR have only considered
the individual normalization of input data, such as scaling
each input data item to range from 0 to 1 [18]. Unfortunately,
neglecting the variation of distribution between the input data
slows down the training process and makes it difficult for
BPNN to train models with saturating nonlinearities [21].
Therefore, we also normalized the data between the inputs in
BRNN by BN technology, which fixes the mean and variance
of the inputs. As shown in Table I, BRNN achieves a better
performance than the traditional BPNN. In particular, for RH,
the R2 increases from 0.25 to 0.44 and the RMSE decreases
from 13.79% to 11.72%. Another feature of BRNN is that we
introduced a sigmoid layer into the output layer. As shown
in Fig. 4, this can prevent abnormal results appearing in the
final output. Comparing with BPNN and SVM, no negative
values are output for WVD by BRNN. Generally, in machine
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Fig. 11. Comparison between the RH profiles generated using the BRNN, SVM, BPNN, and XGBoost retrieval methods and the radiosonde at (a) and
(b) 23:15 UTC on April 2, 2019, and (c) and (d) 11:15 UTC on March 14, 2019.

Fig. 12. Training loss (blue dotted line) and validation loss (red dotted line)
variation with echoes. (Top) BRNN method without dropout. (Bottom) BRNN
method with dropout.

learning models, overfitting is a serious problem which can-
not be neglected [27]. To reduce the overfitting problem,
we introduced a dropout layer to each hidden layer in the

BRNN. Fig. 12 shows a test for BRNN with or without dropout
layer by calculating the training loss and valid loss variation
with echoes. In deep neural networks, the loss function is
used to measure the difference between the predicted and real
values of the model, while the “echo” symbolizes the number
of iterations. As shown in Fig. 12, without the dropout layer,
the BRNN suffers from overfitting after 50 echoes. Overall,
the combination of these features allows the BRNN to achieve
a better retrieval performance. This is demonstrated in Table I
and Fig. 8. If the model is provided with the same information,
as was done in this research, the BRNN-based temperature,
RH, and WVD are more accurate and reliable than using
BPNN, SVM, XGB, ridge regression, or RF. Another widely
used method for temperature and humidity profile retrieval
from MWR is the 1D-VAR method. Comparing our results
with those of Wang et al. [49], we find that the RMSE of
temperature and WVD for both 1D-VAR and BRNN can be
less than 1 K (below 0.5 km) and 0.4 g/m3, respectively.
Martinet et al. [50] showed that the 1D-VAR RMSE of
temperature can stay within 1 K for heights up to 6 km,
which is better than BRNN. However, this method requires
combining background information (such as the U.S. National
Oceanic and Atmospheric Administration Local Analysis data)
to minimize a cost function [9]. There is also a limitation
for BRNN, in that it must have enough quality-assured data
for training. Currently, the speed of training the BRNN in
this study is 10 min and that of applying the trained BRNN
to retrieve one profile is 0.05 s (CPU: Intel I3, 3.60 GHz;
Memory: 16 GB; GPU: NVIDIA GeForce GTX 1060 6 GB).

It is important to emphasize that in situ observation data
were used as the training data set for BPNN in this study.
If the in situ observation data are not available, instead of
the brightness temperature measured directly from MWR,
the simulated brightness temperature data based on the mono-
chromatic radiative transfer model (MonoRTM) can be input
during the retrieval process [44]. Provided by Atmospheric
and Environmental Research, Inc., MonoRTM uses the same
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physics and continuum model applied in the line-by-line radia-
tive transfer model [45]. The simulated brightness temperature
data for the same channels were obtained by inputting the
radiosonde data into MonoRTM. The radiosonde data need to
be preprocessed to fit the input requirements of MonoRTM,
and the weather conditions, clear-sky or cloudy-sky, also need
to be considered.

V. CONCLUSION

This study developed a BRNN, for temperature, RH, and
WVD profile retrieval from ground-based radiometric obser-
vations. The vertical profiles were retrieved from a 14-channel
RPG-HATPRO located in Beijing, China. In validation with
radiosonde measurements, the results obtained by BRNN
showed a good retrieval capability with an RMSE of 1.70 K
for temperature, 11.72% for RH, and 0.256 g/m3 for WVD.
The BRNN-based retrieval RMSE for temperature is less
than 1.5 K up to 5 km and, for WVD, its RMSE is about
0.35 g/m3 from the surface up to 3.5 km and then decreases
below 0.1 g/m3 above 8 km. In addition, the performance
of the various retrieval methods was compared with BRNN
using the same training and test data. From the comparison
results, we showed that the result from BRNN has a better
correlation with, and smaller difference from, the radiosonde
data than BPNN, XGBoost, SVM, ridge regression, and RF.
In particular, for temperature and RH retrieval near the surface,
a significant improvement was demonstrated in BRNN (RMSE
less than 1 K and 5%, respectively).

This article demonstrated that BRNN is an effective method
to retrieve the temperature and humidity profiles. We believe
that BRNN can improve the MWR to capture the temperature
and humidity profiles with a high temporal resolution.
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