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ABSTRACT

The planetary boundary layer turbulence and moist convection parameterizations have been modified recently in the
NASA Goddard Institute for Space Studies (GISS) Model E2 atmospheric general circulation model (GCM; post-CMIP5,
hereafter P5). In this study, single column model (SCM P5) simulated cloud fractions (CFs), cloud liquid water paths (LWPs)
and precipitation were compared with Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) ground-
based observations made during the period 2002–08. CMIP5 SCM simulations and GCM outputs over the ARM SGP
region were also used in the comparison to identify whether the causes of cloud and precipitation biases resulted from either
the physical parameterization or the dynamic scheme. The comparison showed that the CMIP5 SCM has difficulties in
simulating the vertical structure and seasonal variation of low-level clouds. The new scheme implemented in the turbulence
parameterization led to significantly improved cloud simulations in P5. It was found that the SCM is sensitive to the relaxation
time scale. When the relaxation time increased from 3 to 24 h, SCM P5-simulated CFs and LWPs showed a moderate increase
(10%–20%) but precipitation increased significantly (56%), which agreed better with observations despite the less accurate
atmospheric state. Annual averages among the GCM and SCM simulations were almost the same, but their respective
seasonal variations were out of phase. This suggests that the same physical cloud parameterization can generate similar
statistical results over a long time period, but different dynamics drive the differences in seasonal variations. This study can
potentially provide guidance for the further development of the GISS model.
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1. Introduction

Although many improvements have been made in the
Coupled Model Intercomparison Project Phase 5 (CMIP5;
Taylor, 2001; Jiang et al., 2012; Klein et al., 2013; Lauer
and Hamilton, 2013; Li et al., 2013; Wang and Su, 2013),
cloud amount, distribution, diurnal cycle, and their relation
to large-scale dynamics are still problematically simulated in
climate models (e.g., Zhang et al., 2005; Qian et al., 2012;
Su et al., 2013; Stanfield et al., 2014; Dolinar et al., 2015;
Jiang et al., 2015) and numerical weather prediction mod-
els such as the NOAA global forecast system (Yoo and Li,
2012; Yoo et al., 2013). Motivated by recently changed
planetary boundary layer (PBL) turbulence and moist con-
vection parameterizations in the NASA Goddard Institute for
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Space Studies (GISS) Model E2 atmospheric general circu-
lation model (GCM) (post-CMIP5, hereafter P5), Stanfield et
al. (2014, 2015) investigated P5-simulated clouds and top-
of-the-atmosphere (TOA) radiation budgets and found that
P5 was significantly improved compared to its CMIP5 pre-
decessor (C5). However, these studies were done on a global
scale and without a detailed examination of the vertical dis-
tributions and diurnal variations of clouds. Improvements in
the representation of regional clouds and related processes as
a result of updated parameterizations were also not investi-
gated in their studies.

Due to the complexities of evaluating GCMs with obser-
vations, the single column model (SCM) approach was devel-
oped to evaluate and test model parameterizations (Randall et
al., 1996). It has been implemented by the Atmospheric Radi-
ation Measurement (ARM) program (Ackerman and Stokes,
2003) to improve the representation of clouds and radiation in
GCMs using long-term surface observations (Klein and Del
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Genio, 2006). SCMs take advantage of the fact that parame-
terizations for processes such as those that create clouds are
independent for each column in a GCM. To run an SCM, it
is necessary to generate forcing data to drive it. Forcing data
used by others were derived from field experiment data or
enhanced soundings obtained during intensive observing pe-
riods. These kinds of SCM studies (e.g., Ghan et al., 2000;
Betts and Jakob, 2002; Xu et al., 2005; Xie et al., 2005) were
limited to relatively short periods, usually from one week to
one month.

Combining ARM long-term observations and the Rapid
Update Cycle 2 weather forecast model (RUC), Xie et al.
(2004) developed a continuous forcing product (1999–2001)
over the ARM Southern Great Plains (SGP) site, which pro-
vides a tool for modelers to run SCMs over a longer time pe-
riod. Kennedy et al. (2010) ran the GISS SCM (SI2000 ver-
sion) using the three-year ARM forcing dataset and compared
simulated cloud fractions (CFs) with ARM ground-based li-
dar data and Geostationary Operational Environmental Satel-
lite observations. Using the same forcing data, Song et al.
(2013, 2014) ran seven SCMs (including the GISS SCM) and
compared simulated precipitation and CFs with ARM SGP
observations. These studies demonstrated the importance of
doing long-term SCM evaluations to diagnose the causes of
cloud and precipitation biases in the models. Because an
SCM is a single grid box of a GCM and lacks interactions
with large-scale circulation and dynamic feedback present
in the GCM, it would be ideal to compare both GCM and
SCM outputs over the same grid box with observations. This
comparison would help to determine whether the cloud and
precipitation biases in the models result from model physical
parameterizations or model dynamics because both the GCM
and the SCM have the same physical parameterizations.

The SCM may accumulate large errors or depart too far
away from observations when the running period is longer
than a week. Therefore, either a reset or a relaxation tech-
nique is often used in SCM model simulations (Lohmann et
al., 1999; Randall and Cripe, 1999; Hack and Pedretti, 2000;
Iacobellis et al., 2000; Kennedy et al., 2010). Note that us-
ing the relaxation technique can result in unrealistically high
or low precipitation in different model simulations. In addi-
tion, it is difficult to find a relaxation time scale that would
keep the model’s atmospheric states close to the observations
and allow the model to develop its own process. In previous
evaluation studies, different relaxation times were used, and
model responses were varied (Kennedy et al., 2010; Song et
al., 2014), which encouraged us to investigate the model sen-
sitivity to the relaxation time. Therefore, multiple SCM runs
were carried out using different relaxation time scales using
the ARM SGP long-term forcing dataset. The simulated re-
sults were then compared with long-term ARM SGP merged
soundings and cloud observations to achieve a better under-
standing of the response of SCM simulations to the relaxation
time scale.

The primary purpose of this study is to evaluate the GISS
Post-CMIP5 SCM (SCM P5) simulated cloud and precipita-
tion outputs using ARM SGP ground-based radar-lidar ob-

servations made during the period 2002–08. Seasonal and
diurnal variations in CF and precipitation, as well as their
vertical distributions, were examined. To further explore the
causes of cloud and precipitation biases in the model simu-
lations, the outputs over the same grid box from the GCM
and the CMIP5 SCM (SCM C5) were compared. Through
this comparison, we can identify if the biases resulted from
model physical parameterizations or model dynamics. The
secondary goal of this paper is to test the model response to
different relaxation time scales. This paper is structured as
follows: Section 2 provides a brief description of the model,
evaluation data, and methodology used in this study. Section
3 evaluates the SCM and GCM outputs against observations
and investigates the possible causes for model biases. A sum-
mary of findings and conclusions are provided in section 4.

2. Datasets and methodology

2.1. GISS-E2 SCM and GCM

The GISS SCM P5 used in this study is identical to the P5
GCM described by Stanfield et al. (2014, 2015) with updated
PBL turbulence and moist convection parameterizations. The
model has a horizontal resolution of 2◦ ×2.5◦ latitude by lon-
gitude with 40 vertical layers, following sigma coordinates to
150 hPa with constant pressure layers above and a model top
at 0.1 hPa. The dynamics and physics in the model are calcu-
lated and output every 30 minutes (Schmidt et al., 2014). P5
atmospheric GCM intermediate diagnostic data, which run
with prescribed sea surface temperatures, are provided by the
NASA GISS. C5 GCM simulations are obtained from the
Earth System Grid Federation Program for Climate Model
Diagnosis and Intercomparison database.

The GISS SCM uses a diagnostic cloud scheme that par-
titions CF into convective and stratiform clouds. The total
CF is the sum of stratiform and convective CFs. In the strat-
iform parameterization, the model diagnoses large-scale CFs
using a relative humidity (RH)–based scheme (Sundqvist,
1978; Sundqvist et al., 1989). A relationship between grid
box mean RH and cloud occurrence is assumed. To form
clouds in the model, a critical RH (U00) must be reached. In
the early version of the SCM (SI2000), U00 was set to 60%
and held constant both in space and height. In the later ver-
sion, the U00 is allowed to vary to some degree. For example,
U00 is lowered in regions of upward motion and is also al-
lowed to vary in the boundary layer by consideration of the
variance in subgrid-scale moisture. In the latest version of
P5, instead of specifying U00, two parameters, Ua and Ub,
are used to achieve radiative balance and a better cloud cli-
matology (Yao and Cheng, 2012). Ua is primarily used to
form clouds above 850 hPa, while Ub is for clouds below 850
hPa. In this study, Ua and Ub in the P5 (C5) model are set to
0.65 and 1.0, respectively, which are tuned to radiative bal-
ance. In addition, wmui mulitplier is 2.0 (critical ice cloud
water multiplier) and entrainment cont1 is 0.4 (constant for
entrainment rate).

The P5 version with the newer turbulence parameteri-
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zation scheme differs from the C5 version in the following
ways: (1) the diffusivities and the counter-gradient flux term
in the nonlocal vertical transport scheme are modeled differ-
ently; (2) the turbulence length scale is defined differently;
and (3) for the calculation of the PBL height, the P5 scheme
uses the “Richardson number criterion”, while C5 uses the
“TKE criterion” as detailed by Yao and Cheng (2012). For
the moist convection parameterization, the CF is determined
by the updraft mass flux and the convective updraft speed
(Del Genio and Yao, 1993). The P5 cumulus parameteriza-
tion has been modified with increased entrainment and rain
evaporation, and changes in the convective downdraft, as dis-
cussed by Del Genio et al. (2012).

2.2. ARM continuous forcing
To drive SCMs, atmospheric state variables, including

temperature and humidity profiles, vertical and advective ten-
dencies, must be specified. The ARM large-scale continuous
forcing dataset over the ARM SGP site developed by Xie et
al. (2004) is used in this study. This forcing dataset was pro-
duced through a combination of atmospheric state variables
from the RUC 2 weather forecast model (Benjamin et al.,
2004) and surface and TOA observations made at the ARM
SGP site (Zhang et al., 1997). This forcing corresponds to a
circular area approximately 180 km in radius centered on the
SGP site (36.6◦N, 97.5◦W). The forcing data were originally
developed for 1999–2001 from 40-km RUC-2 simulations,
with an extension to the year 2008. Compared to the original
three-year forcing dataset, the new forcing dataset (2002–08)
has an updated physical parameterization with a higher reso-
lution (13 km).

To be consistent, the new forcing dataset (June 2002–
December 2008) was used to drive the SCM in this study.
Forcing data from January–May 2002 and February 2003 are
not available. Some parameters from the forcing, such as at-
mospheric temperature, RH profiles, precipitation rate, and
liquid water path (LWP), are used as a ground truth to evalu-
ate the modeled results at a temporal resolution of one hour.

2.3. ARM ground-based observations
The ground-based observations are primarily made by the

ARM 35-GHz millimeter wavelength cloud radar (MMCR)
at the ARM SGP site, which has a minimum detectable re-
flectivity factor of −55 dBZ at 1 km and −35 dBZ at 10 km
(Moran et al., 1998). The MMCR operates at a wavelength
of 8 mm in a vertically pointing mode and provides contin-
uous profiles of radar reflectivity from hydrometeors mov-
ing through the radar field of view, allowing for the identi-
fication of clear and cloudy conditions. The beam width is
0.2◦ resulting in a horizontal resolution of ∼40 m at 12 km
above ground level. Belfort laser ceilometer and micropulse
lidar (MPL) measurements are also used as an additional data
source to determine the cloud base height (Clothiaux et al.,
2000). Inclusion of laser ceilometer and MPL measurements
allows for the filtering out of insects present near the ground
during the spring and summer seasons at the SGP site. The
total CF is the ratio of cloudy samples detected by the ARM

radar-lidar to the total number of samples when both radar
and lidar-ceilometer instruments were in operation (Xi et al.,
2010). The high, middle, and low-level CFs are defined as
>6 km, 3–6 km and <3 km, respectively. To address the
comparability of CFs between models and ground observa-
tions, an extension of the ISCCP simulator for radar data
is used (Del Genio et al., 2005). The simulator assumes a
random-maximum cloud overlap assumption for stratiform
clouds and maximally overlapped assumption for convective
clouds, which are consistent with the treatment in the GISS
model.

2.4. Relaxation technique
To prevent model errors from accumulating over time,

the relaxation technique can be applied to relax the temper-
ature and humidity profiles towards observations in a certain
relaxation time scale. The use of relaxation does not hide
model problems (Randall and Cripe, 1999) and can suppress
the sensitivity to initial conditions (Hack and Pedretti, 2000).
However, precipitation is always an issue in the SCM when
using relaxation because spuriously high or low precipita-
tion can occur, depending on the model. Song et al. (2013)
found that the GISS SCM-produced precipitation amount was
much smaller than observations when using a relaxation time
scale of three hours. Kennedy et al. (2010) reported that the
GISS SCM-simulated precipitation amount was close to the
observed value at the SGP site when using the reset method
every 24 h instead of relaxation.

2.5. Simulation design
To fully explore differences in the C5 and P5 model ver-

sions, and their response to the relaxation time scale, several
model experiments were designed (Table 1). These simula-
tions were all driven by the same ARM forcing data. The
first set of P5 runs was relaxed on temperature, T , and spe-
cific humidity, q, at a time scale of three hours and is called
the “SCM P5 (3h)” run. In the second set of runs, a 24-h
relaxation time scale was set for both T and q fields and is
called the “SCM P5 (24h)” run. For the third set of runs, the
C5 SCM version was run with the relaxation time set at 24 h
and is called the “SCM C5 (24h)” run. Other P5 simulations
with 6- and 12-h relaxation time are shown in Table 1. In this
study, we mainly focus on the 3- and 24-h relaxation time;
therefore, other relaxation times are not discussed in detail.
All simulations were initialized at 0000 UTC at the beginning

Table 1. SCM and GCM simulations carried out in this study.

Simulation name Relaxation time Version

SCM P5 (3 h) 3 h Post-CMIP5
SCM P5 (6 h) 6 h Post-CMIP5
SCM P5 (12 h) 12 h Post-CMIP5
SCM P5 (24 h) 24 h Post-CMIP5
SCM C5 (24 h) 24 h CMIP5
GCM P5 – Post-CMIP5
GCM C5 – CMIP5
No Relax None Post-CMIP5
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of a month, ran the whole month, and were reinitialized every
month. Both C5 and P5 simulations from GISS were added
in our experiment.

Figure 1 illustrates the model-simulated 500-hPa temper-
atures with different relaxation time scales against ARM con-
tinuous forcing during the first 100 h of November 2007.
The simulation without relaxation, as expected, performs the
worst in terms of deviations from observations. The simula-
tion with 3-h relaxation agrees well with observations, show-
ing no significant difference in the first 100 h. Simulations
with 24-h relaxation have more deviations from observations
than the 3-h simulation, due to the lesser constraint placed by
the forcing. The mean error from different SCM runs during
the entire month is consistent with the results seen in Fig. 1
(not shown).

3. Results and discussion

3.1. Atmospheric state
Given the central role of RH in GCMs as a regulator

of longwave radiation and an indicator of when clouds will
form, it is necessary to assess simulated RH together with
temperature against observations. Figure 2 shows the mean
biases of simulated temperature and RH profiles using three
different relaxation time scales against ARM forcing data
during the period 2002–08. As shown in Fig. 2a, simulated
temperatures had positive biases above 200 hPa and below
850 hPa, but had negative biases from 850 hPa to 200 hPa.
The SCM P5 (24 h) and SCM C5 (24 h) simulations had the
largest temperature bias (1 K) at all levels, reaching up to 2
K near the surface. Biases for the simulation using a 3-h re-
laxation time were generally within 0.2 K and up to 1 K near
the surface. The shorter relaxation time more strongly con-
strains temperature, making the simulations agree better with
observations.

For the simulated RH (Fig. 2b), the pattern in biases is
generally opposite to that seen for temperature. The opposite

signs in temperature and RH biases make physical sense be-
cause higher (lower) temperatures tend to have lower (higher)
RH for a given specific humidity. The RH bias is within 5%
at all levels when using the 3-h relaxation time. Simulations
with 24-h relaxation have a more positive bias (∼10%), espe-
cially around 800 hPa. Because the SCM P5 (24 h) simula-
tion tended to produce more moisture in the atmosphere than
the SCM P5 (3 h) simulation, more clouds may have been
generated because RH plays an essential role in simulating
stratiform clouds in the model. Note that the continuous forc-
ing used as ground truth is not error free. The ARM forcing
has a nearly 5% positive RH bias near the surface compared
to Cloud Modeling Best Estimate soundings, as discussed by
Kennedy et al. (2011). Therefore, the large negative bias seen
in the model simulations can be partly ascribed to the forcing
bias.

3.2. CF

3.2.1. Vertical distribution

Figure 3 shows the monthly mean time–height series of
CFs observed by the ARM MMCR (Fig. 3a), simulated by
SCM P5 using different relaxation times (Figs. 3b and c),
SCM C5 (Fig. 3d), and P5 and C5 GCM output (Figs. 3e and
f) from a grid box over the ARM SGP site during the pe-
riod 2002–08. The GCM results will be discussed in section
3.4. Figure 3a shows a bimodal distribution of clouds with
peaks around 850 hPa and 300 hPa from October to June.
High clouds were present nearly all year round, reaching a
maximum in February and June. Low clouds persisted from
October to June and occurred the least during the summer
months.

Compared to the ARM MMCR-derived CF, all SCM sim-
ulations can capture the seasonal variation in and vertical dis-
tribution of CFs, but each simulation has its own characteris-
tics due to different relaxation time scales or model versions.
The SCM P5 (3 h) run simulated the smallest CFs among
all simulations, especially for high-level clouds, regardless

Fig. 1. 500-hPa temperature fields provided by ARM continuous forcing (black
line) and SCM simulations during the first 100 h of November 2007. Each
step is 30 min in the SCM model. SCM C5 and SCM P5 represent the GISS
CMIP5 and post-CMIP5 SCMs, respectively. Simulations with different relax-
ation times (3 or 24 h) are used on both temperature and humidity fields.
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Fig. 2. Vertical profiles of mean biases of simulated (a) temper-
ature and (b) humidity with respect to ARM forcing data during
the period 2002–08.

of season. CFs were underestimated at all levels under 200
hPa. Compared to the SCM P5 (3 h) run, more high clouds
were simulated with the longer relaxation time (24 h), which
agreed well with ARM MMCR observations, but low-level
CFs were less than those from the SCM P5 (3 h) run, espe-
cially in the early spring. Differences in CFs arising from
using different relaxation times occurred because the model
tended to produce a moist bias, which created a moist atmo-
sphere under a weak constraint, thus producing more high
and mid-level clouds and fewer low clouds. The cloud simu-
lations are also consistent with the RH bias seen in Fig. 2b.

For the C5 version SCM (24 h), the general pattern in
cloud vertical distribution is similar to the SCM P5 (24 h)
version. Both produce more high and mid-level clouds than
SCM P5 (3 h). The largest difference seen in the P5 simu-
lations was in the lower level of the atmosphere, particularly

around 850 hPa, where C5-simulated low clouds were persis-
tently much higher (lower) than the P5 results above (below)
850 hPa. Unlike observations and the P5 version, no obvious
seasonal variation was found in the C5 version. The verti-
cal distribution of the SCM C5 simulated clouds was discon-
tinuous and cut off around 850 hPa, which likely happened
because of the poor PBL parameterization in the C5 version.

To quantitatively estimate the CF differences between ob-
servations and simulations, the vertical distributions of ob-
served and simulated CFs were averaged over the seven-year
period (Fig. 4). From the discussion about Fig. 3 and as shown
in Fig. 4, both observed and simulated CFs had bimodal dis-
tributions with weaker peaks around 850 hPa (∼12.2% from
the ARM MMCR) and strong peaks at 300 hPa (∼15.5% from
the ARM MMCR). Both SCM P5 simulations captured this
vertical structure of CFs with some discrepancies at different
levels. Above 200 hPa, the CF differences between MMCR
retrievals and SCM P5 simulations were almost negligible.
The largest discrepancy occurred from 300–700 hPa, and es-
pecially around 300 hPa, where the SCM P5 (3 h)-simulated
CFs were about 5% lower than MMCR observations and
the SCM P5 (24 h) CFs were nearly identical to MMCR-
observed CFs. This result is consistent with the RH com-
parisons, where SCM P5 (24 h) simulations had the largest
positive RH biases in the middle and high levels of the atmo-
sphere (Fig. 2c). Below 700 hPa, SCM P5-simulated CFs fol-
lowed the observed pattern in vertical distribution, although
the magnitudes of the CFs were about 3% lower than the
MMCR CFs. Near the surface, the SCM P5 (24 h)-simulated
CFs were approximately 5% lower than the MMCR CFs due
to its 10% negative bias in RH. The SCM C5 (24 h) model
performance was almost identical to that of the P5 model
above 500 hPa. However, the C5 model version was unable
to capture the pattern in the middle and low levels of the at-
mosphere. Too much cloud was produced above 850 hPa and
too little was simulated below 850 hPa. Twin peaks in verti-
cal distribution were seen in the C5 simulation and not in the
observations or the P5 simulations. These different vertical
distributions in low cloud cover reflect the differences in the
turbulence parameterization, which is most likely related to
the different methods used for calculating the PBL height in
the P5 and C5 versions. Figure 4 also illustrates that the con-
vective clouds simulated by SCMs are negligible, with CFs
less than 1% at all levels, suggesting that stratiform clouds
are dominant over the ARM SGP site.

It is noteworthy that CF retrievals can differ when using
different remote sensing instruments. In this study, MMCR-
derived CFs were used as ground truth data to evaluate model
simulations. The MMCR can observe the majority of clouds
within the atmospheric column, but experiences strong atten-
uation during heavy precipitation events and has difficulty in
detecting optically thin cirrus clouds. The MPL compliments
the MMCR well by detecting optically thin cirrus clouds,
but its signals can be attenuated quickly when optically thick
clouds are present. The mean CF increased by 10% when us-
ing a combination of MMCR and MPL measurements during
the seven-year period, mainly through an increase in optically
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Fig. 3. Monthly mean time–height CFs derived from (a) ARM SGP ground-based MMCR observations, and NASA GISS
post-CMIP5 [except CMIP5 in (d) and (f)] simulations with a grid box of 2◦ (lat) ×2.5◦ (lon) over the ARM SGP site dur-
ing the period 2002–08, (b) SCM P5 simulations with 3-h relaxation on both temperature and humidity fields, (c) SCM P5
simulations with 24-h relaxation on both temperature and humidity fields, (d) SCM C5 simulations with 24-h relaxation on
both temperature and humidity fields, (e) output from the GISS post-CMIP5 GCM simulation over the ARM SGP site, and
(f) output from the GISS CMIP5 GCM

thin high clouds that are present year round and mid-level
clouds that are present during the summer months. However,
MMCR-derived CFs were still used as ground truth in this
study because the models had difficulty in simulating opti-
cally thin clouds and passive satellites could not detect them.
Therefore, it is meaningful to compare the MMCR-derived
and model-simulated CFs.

3.2.2. Monthly mean

Figure 5 shows the monthly mean total and high/mid/low
CFs derived from ARM MMCR observations and model
simulations at the ARM SGP site. Their annual averages
are listed in Table 2. The ARM MMCR-derived total CFs
remained high (∼50%) during winter and spring months,
reached a minimum (∼40%) during July–September, and

then increased during October–December, which agrees well
with other studies (Dong et al., 2006; Xi et al., 2010).
Monthly uncertainties of total CF observed by the MMCR
instrument were calculated using a bootstrap technique
(Kennedy et al., 2013) for months with instrument uptimes of
>95%. The MMCR-observed total CFs are robust, with small
uncertainties (2%), for most months. The uncertainty for
MMCR CFs during 2002–03 is relatively larger due to more
frequent downtime of the instrument (not shown). Compared
to the seasonal variation in the ARM MMCR total CF (Fig.
5a), all SCM-simulated CFs had similar seasonal changes
with relatively large differences in some months, except for
the SCM C5 (24 h) simulation. In general, the SCM P5 (24
h)-simulated CFs were closer to the MMCR observations
(45%), with annual differences within ±1%. On the other
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Fig. 4. Mean vertical distributions of total CF derived from
ARM SGP MMCR and MPL observations, and simulated by
different SCM and GCM runs for the period 2002–08. The
dashed non-black lines represent CFs produced by the GISS
convection scheme. The dashed black line represents the CF
derived from ARM MMCR-MPL measurements.

hand, the SCM P5 (3 h)-simulated CFs were much less than
the ARM MMCR CFs throughout the year, with a 7% nega-
tive bias compared to the MMCR annual total CF. Compared
to the P5 simulations, the SCM C5-simulated CFs were gen-
erally higher all year round, particularly during the period
of June–September, which is a strong convection season at
the SGP site. The annual averaged SCM C5 CF was 10%
higher than the MMCR annual averaged CF, with a maxi-
mum positive bias of 40% during August. Since the same
ARM forcing data were used by the SCM P5 and SCM C5
models, this large positive bias presumably results from their
different PBL parameterizations.

To further investigate the source of biases in total CFs,
clouds were classified as high (>6 km), middle (3–6 km),
and low (<3 km) clouds. The seasonal variations of these
three levels of CFs are presented in Figs. 5b–d and their an-
nual averages are listed in Table 2. The SCM P5 (3 h) simu-
lation underestimated the high-level CF compared to ground
observations by 8%, which resulted in a 7% negative bias
in its total CF. After applying a longer relaxation time, the
high-level CFs were increased by 7% in the SCM P5 (24 h)
simulation, where the 24-h simulated high-level CFs were al-
most identical to the MMCR CFs, especially from late spring
to early fall. For mid-level clouds, all simulations produced
more clouds than observed, ranging from 1% in the SCM P5

(3 h) simulation to 6% in the SCM P5 (24 h) simulation. In
comparison with observations, the SCM C5 (24 h) simula-
tion overestimated mid-level CFs by 14%. Most of the over-
estimation occurred during the summer months, especially in
August, which most likely contributed to the RH bias in the
forcing. For low-level clouds, the P5 (3 h) simulation per-
formed best (1% positive bias), while other simulations had
±2% biases. Although other simulations agreed within 2%
with the MMCR annual result, the good agreement for an-
nual mean was a compensation of negative biases in spring
and positive biases during summer.

3.2.3. Diurnal cycle

Figure 6 shows the diurnal variation in CFs from surface
observations, as well as simulations, during the period 2002–
08. The MMCR-derived total CF (Fig. 6a) shows that clouds
began to increase in the early morning, reached a maximum at
noon, then decreased in the afternoon and dropped to a mini-
mum at 1800 Local Time (LT, Local hour at the ARM SGP is
UTC–6 h). The SCM P5 simulations peaked at 0500 LT and
bottomed-out at around 1800 LT. The SCM P5 (3 h) simula-
tion showed the strongest diurnal variation, with a magnitude
of 15%. Similar to its seasonal variation, hourly mean to-
tal CFs from the SCM P5 (3 h) simulation were lower than
MMCR observations and other SCM simulations throughout
the day. Hourly mean total CFs from the SCM C5 simulation
did not capture the diurnal pattern seen in MMCR observa-
tions, showing an opposite diurnal variation in the daytime.
The diurnal cycle of CF in the warm season (April to Octo-
ber) showed no significant difference from the whole year,
even though the diurnal signal was somewhat enhanced (not
shown).

The MMCR-observed high clouds were slightly more fre-
quent during the evening and night, reaching a minimum at
∼1400 LT. In contrast to the observed diurnal variation, simu-
lated high-level CFs increased from morning to 1300 LT and
then decreased until 2100 LT with more clouds in the day-
time than at night. No obvious diurnal variations in mid-level
clouds were seen from observations and P5 simulations. The
SCM P5 (3 h) simulation had an excellent agreement with
MMCR observations, but both SCM P5 (24 h) and SCM C5
simulations overestimated mid-level clouds at all times. The
noticeable increase in mid-level CF in the afternoon from the
SCM C5 simulation contributed the most to the total CF from
this simulation. MMCR-observed and model-simulated low-
level clouds had strong diurnal cycles, which is primarily at-
tributed to solar radiation and the ground temperature. As
shown in Fig. 6d, MMCR-observed low-level clouds mono-
tonically increased from 0000 LT to 1000 LT, decreased until
1800 LT, and then leveled off. Simulated P5 low-level clouds
peaked at 0700 LT and reached a minimum at 1700 LT. The
diurnal variation in low clouds from the C5 simulation agrees
well with observations.

3.2.4. Possible causes of CF bias

To investigate the possible causes of the biases in simu-
lated CFs, probability distribution functions (PDFs) of high,
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Fig. 5. Monthly mean (a) total CF, (b) high-level CF (>6 km), (c) mid-level CF (3–6 km), and (d) low-
level CF (<3 km) derived from ARM MMCR measurements and simulated in a 2◦ (lat) ×2.5◦ (lon) grid
box centered on the ARM SGP site. The period covered is 2002–08.

Table 2. Mean CF, precipitation rate, and LWP from observations and simulations for the period 2002–08.

CF (total) CF (high) CF (mid) CF (low) Precipitation rate (mm d−1) LWP (g m−2)

ARM observations 0.45 0.27 0.19 0.21 2.44 80.3
SCM P5 (3 h) 0.38 0.19 0.20 0.20 1.32 68.8
SCM P5 (6 h) 0.39 0.19 0.22 0.19 1.48 71.3
SCM P5 (12 h) 0.41 0.21 0.23 0.19 1.71 74.2
SCM P5 (24 h) 0.46 0.26 0.25 0.19 2.07 77.2
SCM C5 (24 h) 0.55 0.30 0.33 0.24 2.26 113.2
GCM P5 0.42 0.22 0.16 0.25 2.24 77.0
GCM C5 0.51 – – – 2.24 135.8
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Fig. 6. Diurnal variations in (a) total CF, (b) high-level CF (>6 km), (c) mid-level CF (3–6 km), and (d)
low-level CF (<3 km) derived from surface and satellite retrievals and SCM simulations over the ARM
SGP site. The period covered is 2002–08. The local hour at the ARM SGP site is calculated as UTC–6 h.

middle and low CFs as a function of RH were calculated
(Fig. 7). Whenever the CF is greater than zero, the corre-
sponding RH value is counted. The averaged 350–250 hPa,
550–400 hPa and 950–750 hPa levels for RH were selected
to study high-, middle- and low-level clouds. The PDFs for
SCMs with different relaxation times are almost identical.
Here, P5 and C5 simulations (with a 24-h relaxation time)
were compared with observations. The PDF for mid-level
clouds from the SCM simulations matched well with obser-
vations (Fig. 7b). The largest discrepancies occurred in the
high and low levels of the atmosphere. The observed high

clouds have a near-Gaussian distribution, while the SCM P5
simulation has a narrower and steeper distribution, with peaks
at around 50% and 60%, respectively (Fig. 7a). The PDF
of the SCM C5 simulation is less steep and thus represents
high-level CFs slightly better than the P5 simulation. Simu-
lated high clouds tend to occur under higher RH conditions
than observed high clouds, which suggests that the thresh-
old of RH for cloud production in the GISS model might be
much larger than what occurs in nature. For low-level clouds
(Fig. 7c), SCM P5-simulated CFs and observations have sim-
ilar patterns, peaking around RH levels of 70%–80%, while
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Fig. 7. Probabilities of observed, SCM P5 (24 h) and C5 simulated (a) high clouds, (b) mid clouds, and
(c) low clouds, as a function of RH.

Fig. 8. Monthly mean Post-CMIP5 (blue line) and CMIP5 (green line) SCM-
simulated boundary layer heights. The period covered is 2002–08.

SCM C5-simulated CFs peak around RH = 45% and remain
steady above 50%. Thus, the SCM P5 model appears to sim-
ulate low clouds more realistically than the SCM P5 model.
The underestimation in high-level CFs may be primarily due
to their weaker relationship with RH and also to a possibly
incorrect threshold of RH used in the cloud scheme.

A new scheme is implemented in the P5 model turbu-
lence parameterization, which would contribute to the low-
level CF differences seen between the SCM P5 and SCM C5
simulations. The new scheme uses the “Richardson number
criterion” instead of the “TKE criterion”. These two different
methods affect the PBL height significantly. Figure 8 shows
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the boundary layer heights calculated by the SCM P5 and
SCM C5 models. The P5-simulated PBL heights are lower
than those from the C5 simulations. The differences in PBL
height agree well with the differences seen in CF simulations.
The higher PBL height tends to transfer moisture higher into
the atmosphere, thus leading to a higher CF. Although the
shallow convective cloud cover is small compared to the total
cloud cover, it could moisten the lower troposphere by ver-
tical transport, and thus stratiform cloud could have a better
chance of forming (Del Genio et al., 2012; Yao and Cheng,
2012), in turn resulting in the increase of total CF. Therefore,
a positive low-level bias was found in the SCM C5 simula-
tion.

3.3. Precipitation and LWP
Figure 9a shows that there was a strong seasonal variation

in observed precipitation at the SGP site during the period

2002–08. Precipitation was greatest in June, when convec-
tion occurred frequently over this site. Other local maxima in
precipitation occurred in March, August, and October. Pre-
cipitation in Oklahoma is primarily controlled by baroclinic
wave activity from October to April, and by weaker synoptic
systems and mesoscale forcing-produced convection during
the warm season (Kennedy, 2011).

GISS SCM-produced precipitation is the sum of convec-
tive and stratiform precipitation. All SCM-simulated precip-
itation mimicked the variation in observed precipitation with
different negative biases. Similar to the total CF compari-
son, the SCM P5 (24 h)-simulated precipitation (2.07 mm
d−1) was closest to observations (2.46 mm d−1), while the
SCM P5 (3 h) result had the greatest difference, with a nega-
tive bias of −1.13 mm d−1, especially during the strong con-
vective season from April to September. Similar results were
reported by Song et al. (2013), who also used a 3-h relax-

Fig. 9. Monthly mean (a) total (stratiform+convection) precipitation rate measured by ARM surface
instruments (black line), and (b) cloud LWP retrieved from ARM microwave radiometer brightness
temperature measurements (black line), as well as simulations from different model runs (non-black
lines). The period covered is 2002–08. The dashed lines in (a) represent the convective precipitation
produced by models.
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ation time period for their simulations carried out over the
time period of 1999–2001. SCM C5 simulated precipitation,
using a 24-h relaxation time scale, was almost identical to
precipitation from the SCM P5 (24 h) simulation. All these
results suggest that a 3-h relaxation may constrain the SCM
too closely, which could inhibit the generation of clouds and
precipitation from the model. In contrast to SCM P5 (3 h)
results, the precipitation rate when using a longer relaxation
time (24 h) increased significantly and was close to observa-
tions due to accumulated moisture (Fig. 2). The SCM P5 (24
h) results are also similar to results from the SCM simula-
tion conducted by Kennedy (2011), who reset the simulation
every 24 h.

The convective parts of simulated precipitation are also
shown in Fig. 9a, using dashed color lines. Precipitation pro-
duced by convection plays a minor role in producing total
precipitation. However, during the convective season, the ma-
jority of precipitation in models is expected to be convective,
as shown by satellite observations. This weak convection re-

lated to the parcel-lifting-based trigger used in the convection
scheme is always an issue in the GISS model. The turbulent
kinetic energy is not strong enough to provide updrafts capa-
ble of lifting air parcels to the level of free convection. Such
an issue indicates that the convection scheme in the GISS
model still needs to be improved.

The diurnal cycle of the precipitation rate is shown in Fig.
10a. The observed diurnal cycle varied sinusoidally with a lo-
cal maximum at 0300 LT and minimum at 1300 LT. Although
all simulations captured the observed diurnal variation, their
variations were less distinct than observations. Similar to the
seasonal comparison, the simulations with a 24-h relaxation
time were closest to observations, while 3-h simulations were
much lower than observations. In the warm season (March–
September), the diurnal signal increased for both observa-
tions and simulations (not shown), but the diurnal pattern re-
mained consistent with results for the whole year. The diurnal
cycles in the warm season are more obvious, but the general
pattern is consistent (not shown).

Fig. 10. Diurnal variations in (a) total (stratiform+convection) precipitation rate measured by ARM
surface instruments (black line), and (b) cloud LWP retrieved from ARM microwave radiometer bright-
ness temperature measurements (black line), as well as simulations from different SCM runs (non-black
lines). The period covered is 2002–08.
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To further investigate the seasonal and diurnal variations
in precipitation, monthly mean and diurnal variations in LWP
were examined (Figs. 9b and 10b). Figure 9b shows monthly
mean LWP retrieved from the ARM microwave radiome-
ter and simulated in different model runs during the period
2002–08. The seasonal variation in observed LWP was sim-
ilar to observed precipitation, with a peak during May–June
and local maxima in August and October. The P5-simulated
LWPs were almost identical to the observed LWPs from July
to December, but were underestimated from March to June.
The C5 model captured the seasonal variations but overes-
timated LWP every month. The diurnal variation in LWP is
shown in Fig. 10b, where both observed and simulated LWPs
have sinusoidal-like variations with maxima around 0600 LT
and minima around 1900 LT. Both monthly and hourly mean
SCM C5-simulated LWPs were higher than observed and P5-
simulated LWPs. The C5 model had some issues in simulat-
ing the diurnal pattern.

Based on the discussion about clouds and precipitation,
and the annual averages listed in Table 2, we conclude that
the SCM P5-simulated CFs and LWPs increase when relax-
ation time scales change from 3 to 24 h. For instance, the CF
increased from 0.38 in the SCM P5 (3 h) simulation to 0.46
in the SCM P5 (24 h) simulation, which is closest to obser-
vations. The LWP increased from 68.8 g m−2 in the SCM P5
(3 h) simulation to 77.2 g m−2 in the SCM P5 (24 h) simu-
lation, which is also closest to observations. The SCM C5-
simulated CFs, precipitation, and LWPs are all higher than
the P5 simulations with a 24-h relaxation time scale. The P5-
simulated precipitation increased from 1.32 mm d−1 in the
SCM P5 (3 h) simulation to 2.07 mm d−1 in the SCM P5
(24 h) simulation. Therefore, we conclude that the simulated
CF and LWP are primarily determined by the cloud param-
eterizations in different model versions, although they also
increase with longer relaxation time scales. However, sim-
ulated precipitation depends heavily on the relaxation time
scale, i.e., precipitation increases significantly with relaxation
time scale.

3.4. GCM and SCM comparison
In this section we focus on comparing P5 and C5 GCM

and SCM simulated clouds and precipitation using ARM
ground-based observations as ground truth. Since both the
GCM and SCM use the same physical parameterizations, it
is expected that any differences seen arise from the different
dynamics implemented in the models. As shown in Fig. 3d
and Fig. 4, GCM simulations are similar to their correspond-
ing SCM simulations, i.e., the same version of the GCM and
SCM generate similar CFs. The CF profiles generated by
the P5 GCM were much lower than observations at all lev-
els, consistent with the simulated CF from the SCM P5 (3
h) model. For the C5 GCM, the same issues concerning CF
within the PBL arose and more biases were seen in the mid-
level part of the atmosphere.

Although the annual mean P5 GCM-simulated total CF
was only 3% less than the MMCR-retrieved CF (Table 2),
seasonal variations in the monthly mean did not follow obser-

vations. P5-simulated total CFs varied from 0.267 in Septem-
ber to 0.571 in November. Of all the simulations, the C5
GCM-simulated total CF showed no significant seasonal
changes. The GCM P5-simulated mean high-level CF was
5% less than the MMCR CF, falling somewhere between the
SCM simulations. The GCM P5-simulated mean mid-level
CF was 3% less than the MMCR mid-level CF, which is
much less than other SCM simulations. However, the mean
low-level CF was 4% higher than the MMCR low-level CF
and had a ∼15% positive bias from November to December.
Note that positive biases in all SCM-simulated low and mid-
dle clouds in August did not show up in the GCM simula-
tions. This is attributed to the dynamic difference between
the GCM and the SCM driven by the ARM forcing.

For GCM-simulated precipitation rates, the C5 and P5
GCMs have the same annual mean (2.24 mm d−1), with slight
differences seen in certain months. Although their annual
averages were close to the observed average, their monthly
means showed significant patterns compared with observa-
tions and SCM simulations. GCM-simulated precipitation
was out of phase. For example, a peak is seen in April, which
is two months earlier than the observed and P5-simulated
peaks. This is probably related to the model’s inability to cap-
ture the convection propagating from the Rockies, which is a
common issue in many models. The similar annual averages
among the GCM and SCM P5 simulations and observations,
and the complicated out-of-phase seasonal variations, suggest
that the same physical cloud parameterization can generate
similar statistical results over a long time period, but differ-
ent dynamics can drive the differences in seasonal variations.

4. Summary and conclusions

The latest NASA GISS-E2 SCM simulations of CF, LWP,
and precipitation were evaluated against ARM SGP ground-
based observations for the study period 2002–08. In addition
to investigating the responses of the post-CMIP5 (SCM P5)
simulations to various relaxation time scales, we compared
SCM P5 results with CMIP5 (SCM C5) simulations using
ground-based observations as ground truth to explore the im-
pact of their physical parameterizations on simulated results.
GCM results were used to examine whether the responses of
GCM and SCM simulations to the improved parameterization
were consistent. The key findings are summarized as follows:

(1) Compared with MMCR retrievals at the SGP site, the
CMIP5 SCM overestimated the total CF (10%). The positive
bias arises from the overestimation of mid-level clouds (33%
versus 19% from observations) and low-level clouds (24%
versus 21% from observations). The vertical profile of CF
is unrealistic within the boundary layer, producing too many
(few) clouds above (under) 850 hPa. The low-level structure
of and seasonal variation in CF simulated by the latest post-
CMIP5 SCM was improved due to the implementation of a
new turbulence parameterization scheme. However, the un-
derestimation of high cloud related to the weaker relationship
between CF and RH suggests that the cloud scheme needs
more development.
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(2) Cloud and precipitation simulations from the SCM are
sensitive to the relaxation time scale. With a longer relax-
ation time scale (24 h), clouds and precipitation are in better
agreement with ground observations, although state variables
develop more biases. The post-CMIP5 SCM-simulated total
CF increased from 38% to 46%, mostly due to an increase
in high-level clouds. Simulated precipitation increased from
1.32 mm d−1 to 2.07 mm d−1, which was closer to the ob-
served value (2.24 mm d−1). The less accurate temperature
and RH fields leading to the more accurate representation of
clouds suggests a deficiency in the model physics.

(3) GCM and SCM simulations from the same version
agree well and have consistent responses to the modified tur-
bulence parameterization scheme. Both the CMIP5 SCM and
GCM have difficulty in simulating the vertical structure of
and seasonal variation in low-level clouds. This situation is
greatly improved in the post-CMIP5 GCM and SCM. In ad-
dition, since both the GCM and SCM used the same phys-
ical parameterizations, differences in their respective simu-
lated results are due to the dynamic scheme used in the GCM,
because we assume that the ARM forcing driving the SCM
properly represents the dynamics. Our study shows that al-
though the annual averages of the GCM-simulated total CF,
LWP, and precipitation were close to observations and SCM
simulations, their monthly means were out of phase and un-
able to capture the seasonal variation. The similar annual
averages among the GCM and SCM P5 simulations and ob-
servations, and the complicated out-of-phase seasonal varia-
tions, suggest that the same physical cloud parameterization
can generate similar statistical results over a long time period,
but different dynamics can drive the differences in seasonal
variations.

Overall, the changes implemented in the latest GISS
GCM, especially the changes in boundary layer height, have
significantly improved simulated clouds. The change of PBL
stability affects the shallow convection, and thus moistens
the atmosphere and contributes to the formation of strati-
form clouds. The SCM is a useful tool to test and investigate
physical parameterizations, but due to its lack of large-scale
dynamics, the SCM-simulated seasonal cycle is probably in-
consistent with that simulated by the GCM, as shown in this
study. While the results of this study suggest some possible
directions for future improvement, simulations and analyses
need to be carried out on data from other climate regimes,
such as tropical ocean regions, if forcing data are available,
so that a general and more comprehensive understanding of
the possible deficiencies in the model can be gained.
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