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Abstract This study employs an explainable machine learning (ML) framework (XGBoost‐SHapley
Additive exPlanations analysis) to investigate controlling factors on cloud liquid water path (LWP) using
EPCAPE observations near the California coast. Aerosols are found to be the dominant factor explaining LWP
variability, surpassing meteorological factors (MFs). By isolating aerosol effects from meteorological
influences, the ML reveals a negative linear relationship between LWP and cloud droplet number concentration
(Nd) in log space, likely driven by entrainment drying via evaporation‐entrainment feedback. This aligns with
the negative regime of the inverted‐V relationship reported in previous studies, while no positive LWP
responses are found due to a limited number of precipitating cases in EPCAPE. Furthermore, the sensitivity of
LWP to Nd shows a non‐linear dependence on MFs like moisture contrast between surface and free troposphere
and lower‐tropospheric stability. This occurs due to the interplay between the MFs' direct effects on entrainment
drying and indirect effects through LWP adjustments.

Plain Language Summary This study uses an explainable machine learning approach to understand
further how environmental factors influence cloud water by isolating aerosols effect from the co‐influence of
meteorological factors (MFs). Using field campaign observations near the California coast, we find that aerosols
play a more significant role in controlling cloud water than MFs such as moisture contrast between the surface
and free troposphere (dq) and lower‐tropospheric stability (LTS). Our analysis reveals that more aerosols tend to
reduce cloud water, likely because they make clouds lose moisture by enhancing the entrainment of dry air from
the free troposphere due to increased evaporation. We also explore how MFs (i.e., dq and LTS) influence the
sensitivity of cloud water to aerosols, exhibiting a non‐linear impact, as a result of the interplay between the
MF's direct and indirect influence on entrainment drying. This study underscores the capability of explainable
ML to disentangle complex aerosol‐cloud interactions and offers valuable insights for constraining and refining
warm‐cloud microphysics parameterizations in future research.

1. Introduction
Marine stratocumulus clouds significantly cool Earth's climate due to their extensive coverage and high reflec-
tivity, which allows them to reflect sunlight more effectively than other cloud types (Hahn & Warren, 2007;
Warren et al., 1986, 1988). Meanwhile, their low height renders a weak warming effect due to thermal emissions.
These clouds are susceptible to aerosol particles situated chiefly in the marine boundary layer (MBL) that serve as
cloud condensation nuclei (CCN), impacting their micro‐ and macro‐physical properties and hence their cloud
radiative forcing. In terms of microphysical properties, an increase in CCN leads to higher cloud droplet number
concentration (Nd) and smaller cloud droplets for a given liquid water path (LWP), enhancing cloud albedo and
brightening the clouds, the Twomey effect (Twomey, 1977). Changes in CCN can also alter the cloud macro-
physical properties (i.e., cloud fraction and LWP), known as cloud adjustments, by affecting precipitation, cloud
top entrainment, and boundary‐layer stability, among other processes (e.g., Ackerman et al., 2004;
Albrecht, 1989; Bretherton et al., 2007; Chun et al., 2023; Qiu et al., 2024; H. Wang et al., 2011). However, the
radiative forcing from cloud adjustments, including both its sign and magnitude, remains highly uncertain
(Bellouin et al., 2020), likely resulting from the intricate interactions between those physical processes.

Recently, increasing attention has been paid to the LWP adjustment toNd, which is characterized by an inverted‐V
relationship: LWP first increases with rising Nd and then decreases, as evidenced in both satellite observations
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(Arola et al., 2022; Goren et al., 2025; Gryspeerdt et al., 2019) and modeling studies (Hoffmann et al., 2020, 2024;
Mülmenstädt, Ackerman, et al., 2024; Mülmenstädt, Gryspeerdt, et al., 2024). But the underlying causes of this
inverted‐V relationship remain controversial. Some argue for a causal relationship. Specifically, this LWP versus
Nd pattern reflects two distinct sensitivity regimes: a positive regime for a precipitating MBL and a negative
regime for a non‐precipitating MBL. In the precipitating MBL, an increase in Nd leads to smaller cloud droplets,
reducing the efficiency of collision coalescence, thereby suppressing precipitation and increasing LWP
(Albrecht, 1989). On the other hand, in the non‐precipitating MBL, higher Nd enhances the entrainment of dry air
from the free troposphere into the clouds, through the sedimentation‐entrainment effect (Ackerman et al., 2004;
Bretherton et al., 2007) or the evaporation‐entrainment feedback (S. Wang et al., 2003; Xue & Feingold, 2006),
which results in decreased LWP.

However, such a causal explanation is confounded by other factors. In satellite observations, the observed
negative sensitivity of LWP to Nd can result from the retrieval error in cloud effective radius, especially in non‐
raining clouds (Arola et al., 2022). The negative relationship may also arise from aerosol‐LWP covariability
driven by meteorological factors (MFs). A popular hypothesis is the airmass‐history argument (George &
Wood, 2010; Goren et al., 2025; Mülmenstädt, Gryspeerdt, et al., 2024): airmasses originating from continental
regions typically carry higher aerosol concentrations but lower moisture compared to those from oceanic origins,
leading to a negative correlation between Nd and LWP. This covariability is modulated by synoptic‐scale
meteorology that governs airmass advection and boundary‐layer depth. For example, George and
Wood (2010) found that over the Southeast Pacific, the negative Nd‐LWP relationship in time is linked to the
strengthening of the subtropical high near the coast. This intensification suppresses the MBL depth and LWP,
while promoting offshore aerosol transport. Also, the covariability is evident in space (Goren et al., 2025;
Mülmenstädt, Ackerman, et al., 2024): farther offshore, MBLs tend to be deeper due to weaker subsidence, which
favors larger LWP, but lower in aerosol concentrations due to increased distance from continental sources.
Therefore, to enhance our understanding of aerosol effects on LWP, further efforts are necessary, such as
improving retrieval accuracy and isolating meteorology‐induced co‐variability.

The emergence of new ground observations of marine clouds and novel explainable machine learning (ML)
approaches opens up new avenues for understanding cloud water responses to aerosols. The Eastern Pacific Cloud
Aerosol Precipitation Experiment (EPCAPE, Russell et al., 2021), was recently conducted near San Diego,
California, which is downwind from major pollution sources at the ports of Los Angeles and Long Beach. The
site's exposure to a wide range of aerosol particle concentrations and the persistent presence of stratocumulus
cloud layers makes it an ideal location for investigating cloud water responses to aerosols. Also, we employ the
measurements of CCN made at a spectrum of supersaturations in the lower MBL (Uin & Enekwizu, 2024) to
approximate Nd in certain conditions and these ground‐based observations help sidestep the satellite retrieval
errors that introduce spurious negative Nd‐LWP relationships. To isolate the cofounding influence of meteo-
rology, aerosol effects are usually examined through the data stratified by environmental factors (Fons
et al., 2023; Liu et al., 2024). However, such studies usually consider only one or two MFs, potentially over-
looking the influence of other meteorological variables or their interactions. Recently, an explainable ML
approach, namely SHapley Additive exPlanations (SHAP, Lundberg & Lee, 2017; Lundberg et al., 2018), has
proven effective in dissecting the physical controls in marine clouds by isolating the impact of each factor (Jia
et al., 2024; Silva et al., 2022; H. Zhang et al., 2024a). This method is effective to distinguish the effects of
aerosols on cloud water from those of key MFs. This study aims to leverage these EPCAPE observations and the
SHAP analysis to thoroughly examine the Nd‐LWP relationship, including its dependency on large‐scale mete-
orology and its diurnal variations.

2. Data and Methodology
2.1. EPCAPE Observations

The EPCAPE was mainly conducted at a coastal site, the Scripps Pier in La Jolla, with a supplementary site at the
Scripps Mt. Soledad nearby from February 2023 to February 2024 (Russell et al., 2021). It provides compre-
hensive observations of stratocumulus clouds in the Eastern Pacific, including their extent, radiative properties,
and interactions with aerosols. The main‐site observations are used for understanding the Nd‐LWP relationship.
The cloud properties and meteorological variables we adopt are given below.
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The observed LWP is retrieved from the two‐channel microwave radiometer (Turner et al., 2007). The number
concentration of activated CCN is measured by CCN Counter (Dual Column) under a supersaturation ramping
mode from 0.1% to 1.0% (Uin & Enekwizu, 2024), with ramping‐averaged values used for analysis. This mea-
surement approximates Nd, assuming the MBL is well‐mixed throughout the measurement and much of measured
CCN is activated in clouds. Based on the cloud‐surface coupling criteria proposed by Z. Wang et al. (2016), we
have examined the coupling states of our cases using radiosonde data and found that 76% are coupled, supporting
our well‐mixed assumption (Figure S1 in Supporting Information S1). Major chemical components of the
aerosols observed in EPCAPE are total organics and sulfates (Figure S2 in Supporting Information S1). The
profiles of temperature and moisture are taken from balloon radiosondes at the Scripps Pier site, 4 times per day at
02:00, 08:00, 14:00, and 20:00 Local Standard Time (Holdridge & Holdridge, 2020). Wind speeds and wind
directions are obtained from the Surface Meteorological System (MET) (Kyrouac & Tuftedal, 2024). Surface
sensible and latent heat flux (LHF) are from the Eddy CORrelation (ECOR) flux measurement system (Cook &
Sullivan, 2020). The mixed‐layer height is obtained from Planetary Boundary Layer Height (PBLH) Value Added
Products retrieved from radiosondes using the Heffter method (Heffter, 1980). In our study, all variables are
averaged hourly.

2.2. ERA5 Reanalysis Data

The 4‐times‐per‐day observations of balloon radiosondes significantly limit the sample size in our analysis. To
increase samples, we use hourly vertical meteorological data from the fifth‐generation ECMWF reanalysis data
(ERA5, Hersbach et al., 2020), including temperature, moisture, and vertical velocity, as an alternative. The
ERA5 data are then linearly interpolated to the location of the coastal site in La Jolla. We have validated key
meteorological variables including lower‐tropospheric stability (LTS), the moisture contrast between the surface
and 700 hPa (dq), and relative humidity at 700 hPa (RH700), which are calculated from ERA5 against EPCAPE
observations. Figure S3 in Supporting Information S1 illustrates bias metrics for these variables. We find that all
correlation coefficients exceed 0.91, with small root mean squared errors (relative to the observed standard
deviation), affirming the validity of using ERA5 as a reliable alternative to balloon radiosondes for obtaining
vertical meteorological information. The large‐scale vertical velocity and advective tendencies of temperature
and moisture at the coastal site are derived from ERA5 through the constrained variational analysis approach (Xie
et al., 2004; M. H. Zhang & Lin, 1997; M. H. Zhang et al., 2001).

2.3. Isolating Aerosol Effects on LWP From Meteorology

To explore the intricate relationships between LWP and its controlling factors, that is, MFs and aerosols, we
employ a tree‐based ML algorithm, namely the eXtreme Gradient Boosting Decision Tree (XGBoost, Chen &
Guestrin, 2016). This algorithm achieves a scalable and accurate implementation of gradient boosting, out-
performing traditional boosted tree models in speed. More importantly, XGBoost predictions are interpretable
with a statistical approach. To build theMLmodel, eight MFs and one aerosol index (Nd) are chosen as predictors,
based upon our previous work (Cao et al., 2024; H. Zhang et al., 2024a, 2024b). The selected MFs include LTS,
dq, vertical velocity at 700 hPa (ω700), RH700, moisture advective tendency (qadv) at 1,000 hPa, temperature
advective tendency (Tadv) at 1,000 hPa, LHF, and horizontal wind speed at 10 m (Usfc). These factors have been
demonstrated to be the key cloud‐controlling factors, each representing an explicit physical process. For example,
LTS indicates the influence of lower‐tropospheric static stability or cloud top inversion strength on cloud decks
(Bretherton et al., 2013), and dq denotes the efficiency of entrainment of dry air from the free troposphere into
cloud layers (van der Dussen et al., 2014), and more are detailed in Qu et al. (2015). Relative to H. Zhang
et al. (2024b), this study introduces the moisture advection (qadv) as a new predictor to account for the unique
coastal dynamics influenced by the diurnal cycle of sea and land breezes, which leads to varying moisture sources.
The predictors used in the ML model are summarized in Table 1. Note that the relationships explored here are
based on concurrently observed LWP and influential factors. Aerosols may, however, exert a lagged effect on
LWP, which is discussed in Text S2 in Supporting Information S1.

CCN observations began in late May 2023 and were unavailable in October 2023 (see Figure S2 in Supporting
Information S1); consequently, we utilized roughly 7 months of hourly data at the coastal site for model training
and testing, with an independent training/test split of approximately 70%/30%. The total sample sizes for training
and testing are about 3,200 and 1,400 hr, respectively. For the training set, we standardize all input features or
predictors by removing their means and scaling them to unit variance. Given the moderate size of our data set, we

Geophysical Research Letters 10.1029/2025GL115163

ZHANG ET AL. 3 of 11

 19448007, 2025, 15, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2025G

L
115163 by Z

hanqing L
i - U

niversity O
f M

aryland , W
iley O

nline L
ibrary on [15/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



opt not to use complex parameter tuning techniques, such as the Bayesian optimization (Snoek et al., 2012).
Instead, through trial and error, we determine the values of two key parameters: max_depth and n_estimators, set
at 5 and 15, respectively. Here, max_depth represents the maximum tree depth for base learners, while n_esti-
mators denotes the number of gradient boosted trees. The model is trained 100 times to produce a 100‐member
ensemble by randomly separating the data set into training and test sets. The mean squared error (MSE) for the test
set across most ensemble members stays within a 20% range of the training set's MSE, indicating that our model
does not suffer from overfitting. On average, the ensemble members can explain 63.0% of the variation in hourly
LWP, with a standard deviation of 1.7%.

To isolate the contribution of each influencing factor to predicted LWP, the SHAP (Lundberg & Lee, 2017;
Lundberg et al., 2018) analysis is utilized to interpret the XGBoost predictions. This statistical approach is based
on coalitional game theory, which calculates the contribution of a predictor as the difference between the
XGBoost predictions (LWP in this study) in the presence and absence of this specific predictor for all possible
predictor combinations. It explains a model's individual output as a sum of the contributions of each predictor plus
the mean predicted value through an explanation model, which can be expressed as:

y = y +∑iϕi, (1)

where y is the final prediction for one case, y is the average prediction across all cases, and ϕi is the contribution of
the ith predictor to the prediction for this case (called SHAP values). Therefore, for one specific prediction case,
the LWP partially predicted by Nd can be denoted as

LWPNd
= y + ϕNd

(2)

SHAP values are calculated using TreeSHAP, an efficient and exact algorithm for tree ensemble models,
developed using the conditional expectation to estimate predictor's effects with no feature independence
assumption required (Lundberg et al., 2018, 2020). The predictors with larger absolute SHAP values contribute
more to LWP prediction than those with smaller values. We calculate SHAP values for all sample cases (including
both training and test sets) within each ensemble member, and the ensemble‐mean values are used for analysis in
this study.

3. Results
3.1. Aerosol Effects on LWP

Figure 1 shows the importance of each influential factor to predicted LWP, quantified by the hourly (or case)
mean absolute SHAP value of that factor within one ensemble member, then averaged across all members. To
determine the relative perturbation of each factor compared to the base state of LWP in the ML model, the SHAP
value is further normalized by the hourly mean LWP. It is evident that the contribution of aerosols to LWP
outweighs that of any chosen MF, with dq and RH700 the most significant among them. These results, however,

Table 1
Summary of Nine Predictors Influencing Liquid Water Path in the Machine Learning Model

Factors Description Data sources

LTS Lower‐tropospheric stability (K) ERA5

dq Moisture contrast between 1,000 and 700 hPa (kg/kg) ERA5

RH700 Relative humidity at 700 hPa (%) ERA5

ω700 Large‐scale vertical velocity at 700 hPa (hPa/hr) VARANAL

qadv Horizontal moisture advection tendency (g/kg/hr) at 1,000 hPa VARANAL

Tadv Horizontal temperature advection tendency (K/hr) at 1,000 hPa VARANAL

LHF Latent heat flux (W/m2) EPCAPE

Usfc Near‐surface winds at 10 m (m/s) EPCAPE

Nd Activated CCN number concentration (cm− 3) EPCAPE
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may be subject to observational errors in CCN measurements and the ML
model training process (e.g., the train‐test split strategy). We have examined
the LWP perturbation caused by Nd relative to the base state in the MLmodel,
which is approximately 35%. This perturbation exceeds the typical uncer-
tainty (10%–30%) of CCN measurement (Rissler et al., 2004), indicating that
the aerosol signal in this study is robust. To minimize the influence of
randomness, we train our ML model 100 times with random train‐test splits.
The error bars in Figure 1 indicate the standard deviation induced by these
100 ensemble members. The results show that the SHAP value of Nd is sta-
tistically distinguishable from those of dq and RH700, confirming that the
effect of aerosol on LWP is significantly larger than that of any MF. Our
findings of the significant influence of aerosols on clouds, based on regional
ground observations, are consistent with global satellite‐based research. For
example, using near‐global satellite observations, Cao et al. (2024) found that
Nd exhibits the most pronounced impact on low‐level cloud cover, cloud
albedo, and cloud radiative effects compared to MFs on daily scales, as
revealed in a convolutional neural network using the permutation importance
method.

We distinguish the effects of aerosols on clouds frommeteorology through an
explainable ML approach. Figure 2a shows the Nd‐LWP relationship from the
raw data, where aerosol and meteorological influences are mixed, obscuring

the true interaction between aerosols and LWP. As expected, no clear pattern between LWP andNd is found. With
SHAP analysis, we can quantify the LWP contributed only by aerosol effects (LWPNd) via removing meteoro-
logical co‐variabilities. The new relationship after employing SHAP analysis as displayed in Figure 2b uncovers a
well‐defined negative linear Nd‐LWP relationship in log space, which may be explained by the Nd‐induced
entrainment drying effect on LWP, especially for the range of Nd between 250 and 800 cm− 3, which comprises
65.7% of all cases. This pattern aligns with the negative regime of the inverted‐V relationship observed in pre-
vious studies (e.g., Hoffmann et al., 2024) but is shifted toward a more polluted scenario (or higher‐Nd back-
ground). The positive regime is, however, not found in EPCAPE observations, likely because most cases are non‐
precipitating, resulting in no precipitation‐suppression effect. These non‐precipitating cases are indicated by the
right area of the line of 15‐μm cloud top effective droplet radius, commonly used to distinguish precipitating from
non‐precipitating clouds (e.g., Qiu et al., 2024). A comparison of Figure 2b with Figure 2a demonstrates the

Figure 1. Bar plot of each predictor's absolute SHapley Additive
exPlanations (SHAP) values averaged over cases and ensemble members by
XGBoost, normalized by the mean liquid water path. Error bars indicate the
standard deviation of the above SHAP values derived from 100 ensemble
members.

Figure 2. Relationship between hourly liquid water path (LWP) and Nd derived from Eastern Pacific Cloud Aerosol Precipitation Experiment observations. (a) The
relationship when aerosol effects on LWP are co‐influenced by large‐scale meteorological factors like large‐scale vertical velocity, surface winds, etc. (b) The
relationship after removing meteorological effects using the SHapley Additive exPlanations analysis. The color bar indicates scatter density, and the dashed line in panel
(b) represents the 15‐μm cloud top effective droplet radius.
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capability of this novel explainable ML approach to disentangle dynamical co‐variability, offering valuable in-
sights into the impact of aerosols on stratocumulus clouds and advancing our qualitative understanding of these
complex interactions.

Similarly, we examine the meteorological controls on LWP after isolating aerosol effects, as shown in Figure S4
in Supporting Information S1. Compared to aerosol effects, meteorological controls are more complex, with some
factors exhibiting linear relationships and others showing non‐linear behavior. For linear relationships, LWP
generally increases with RH700 and qadv while decreasing with ω700. The increases in LWP are caused by
weakened entrainment drying due to offset cloud top radiative cooling (Myers & Norris, 2016; van der Dussen
et al., 2015) and increased moisture sources, respectively. The decrease in LWP is induced by subsidence drying
(van der Dussen et al., 2016). These findings agree with those of H. Zhang et al. (2023), in which these re-
lationships are studied using LES modeling. These agreements demonstrate the effectiveness of explainable ML
in helping understand physical controls on cloud properties. Those non‐linear behaviors are detailed in Text S1 in
Supporting Information S1.

3.2. Dependence of Nd‐LWP Relationship

The aforementioned findings reveal a negative Nd‐LWP relationship consistent with entrainment drying effects,
which are inherently controlled by two factors, dq and LTS. dq governs the efficiency of the drying effects given
the same level of turbulence (see Equation 1 in H. Zhang et al. (2023)), while LTS influences the strength of
entrainment rate. In that regard, we next delve into the investigation of the dependence of the Nd‐LWP rela-
tionship on those two factors. As shown in Figure 2b, the linear response of LWPNd to Nd in log space is most
evident when Nd ranges between 250 and 800 cm

− 3. This linear relationship disappears at lower Nd values due to
insufficient precipitating cases and at higher Nd values due to saturated aerosol effects. Therefore, the slope of
LWPNd versus Nd in the medium range of Nd (250–800 cm

− 3) is calculated to represent the most significant linear
response. Slight adjustments to these boundary values does not affect results. To explore how this response
depends on dq and LTS, we sort data samples into 10 quantile bins based on dq or LTS values (Figures S6 and S7
in Supporting Information S1). Within each bin, the sensitivity of LWP to Nd is calculated using the above
method, as summarized in Figures 3a and 3b.

Generally, the response of LWP to Nd exhibits a non‐linear dependence on dq and LTS, as illustrated by the
purple versus green boxes in Figures 3a and 3b. We assume this behavior arises from two competing effects: the
direct influence of the MF on entrainment drying through changes in drying efficiency or entrainment strength,
and its indirect influence via LWP modifications. As shown in Figure 3a, the sensitivity of LWP to Nd (measured
by the magnitude of dlnLWPNd/dlnNd) initially increases with dq and then decreases. The initial increase is linked
to greater entrainment drying efficiency as dq rises. However, further increases in dq deplete LWP, and the
resulting reduction in cloud top radiative cooling limits entrainment processes, leading to a weaker response of
LWP to Nd (Figure 3c). A similar inverted‐V relationship is observed for LTS (Figure 3b). At lower LTS, the
sensitivity of LWP to Nd is enhanced because stronger LTS traps moisture in the PBL, increasing LWP and
promoting cloud top entrainment. However, at higher LTS, the suppression of entrainment dominates, resulting in
weaker sensitivities. These findings highlight the critical role of the interplay between MFs' direct and indirect
effects on entrainment drying in shaping the Nd‐LWP relationship. In addition to dq and LTS, the effects of RH700

andω700 (two key contributors to LWP identified in Figure 1) on the LWP sensitivities are examined (Figure S8 in
Supporting Information S1). Their impacts on LWP sensitivities are found to be relatively simpler or linear, as
primarily driven by their influence on LWP.

We further analyze the diurnal cycle of LWP responses to Nd by sorting data into 24 local hourly bins and
calculating the sensitivity for each bin (Figure 3d). The dashed lines indicate the sunrise and sunset times
averaged across all sample days. The LWP sensitivities are notably weaker during the daytime (highlighted by the
gray box in Figure 3d) than at night. The reduction is due to the weakened entrainment, resulting from the
presence of solar radiation that offsets cloud top radiative cooling and a concurrent decrease in LWP. It is noted
that the effects of solar radiation on LWP sensitivities are delayed by about 2 hours after sunrise and sunset. Also,
the diurnal cycle of surface wind directions contributes to this pattern. During the daytime, sea breeze (Figure S9a
in Supporting Information S1) induces anomalous downdrafts over the ocean (Figure S9b in Supporting Infor-
mation S1), pushing downward the PBLH and reducing LWP, which further weakens the LWP response to Nd

(Figure 3c).
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4. Discussion
In this study, the slope of the Nd‐LWP relationship is obtained through SHAP analysis and corresponds to the
partial derivative of LWP w.r.t. Nd, which isolates the individual effect of aerosols. In contrast, earlier studies
(e.g., Hoffmann et al., 2024; Qiu et al., 2024) typically compute the full derivative, which inherently includes both
aerosol and meteorology‐mediated effects. The extent to which meteorological effects remain in those slopes
depends on the sampling strategy. Overall, our slope (− 1.1 in Figure 2b) is more negative than the full‐derivative
slopes that do not remove meteorological effects (e.g., around − 0.4; see Figure 1a in Qiu et al. (2024)), while
aligning more closely with those full‐derivative slopes that reduce meteorological influences by classifying
samples into different cloud regimes, for example, the slopes for non‐precipitating cloud regimes range from − 0.8
to − 1.2 (see Figure 2a in Qiu et al. (2024)). A detailed discussion of slope definitions and their implications is
provided in Text S3 in Supporting Information S1.

As for the underlying mechanism, the negative Nd‐LWP relationship observed in our study is likely induced by
the entrainment effect. However, previous studies have shown that synoptic‐scale meteorological influences may
also contribute, particularly through the airmass‐history argument as discussed in the introduction. To test this
possibility, we compute 24‐hr backward trajectories using the HYSPLITmodel and categorize each case based on
airmass origin (oceanic or continental; Figure S11 in Supporting Information S1). Oceanic airmasses are found to
be more humid and cleaner than continental ones (Figure S11c in Supporting Information S1 vs. Figure S11d in
Supporting Information S1). If airmass history were the dominant factor, the Nd‐LWP relationship would be weak
or even disappear when the airmass origin is controlled. However, the negative correlation remains strong within

Figure 3. Dependence of theNd‐LWPNd relationship on various factors: (a) dq, (b) lower‐tropospheric stability, (c) liquid water path, and (d) Local Time. In panels (a–c),
the data are sorted into 10 quantile bins based on the respective factor, while in panel (d) they are binned into 24 hourly intervals. The sensitivity of LWPNd to Nd is
calculated within each bin, with error bars representing the standard deviation of the sensitivity. The purple and green boxes in panels (a, b) mark the downward and
upward trends, respectively. The dashed lines in panel (d) indicate the mean sunrise and sunset times, and the gray box marks the daytime period shifted 2 hours forward.
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both oceanic and continental subsets (Figures S12a or S12b in Supporting Information S1), suggesting that
airmass‐history‐induced covariability is not the primary driver.

Another way to assess the airmass‐history hypothesis is to select an index that can reflect airmass history and
examine its correlation with Nd and LWP. Prior studies (Goren et al., 2025; Mülmenstädt, Ackerman, et al., 2024;
Possner et al., 2020) commonly use PBLH for this purpose. PBLH also proves to be a useful proxy in our study, as
lower PBLH is significantly correlated with more negative moisture advection (r = 0.4), indicating continental
airmass influence (Figure S11d in Supporting Information S1). To examine whether the Nd‐LWP relationship is
affected by meteorological covariability, we stratify the data into 4 quantile bins based on PBLH (Figure S13 in
Supporting Information S1). In the middle PBLH range (Figures S13b and S13c in Supporting Information S1),
where PBLH is uncorrelated with aerosols, the strong negative Nd‐LWP relationship persists, suggesting it is not
driven by meteorological variability. However, at the lowest and highest PBLH ranges, PBLH is correlated with
both Nd and LWP, implying that meteorological covariance may exist under those conditions. However,
considering the strongNd‐LWP correlation and the fact that PBLH explains only a small portion of the variance in
Nd and LWP (Figure S13 in Supporting Information S1), such covariance is less likely to be the dominant factor.

Little covariance is observed within the middle PBLH range, likely because the main observation site, located
along the coast, is subject to complex influences such as mesoscale circulation, the Catalina eddy, and sea breeze
circulation. The role of subtropical anticyclonic subsidence in covariance, therefore, remains limited unless it
remarkably influences airmass advections (indicated by the extreme low or high PBLH). While our results
support a dominant causal role of aerosols, a more robust, process‐level assessment using large‐eddy simulations
is needed to isolate aerosol effects under controlled meteorological conditions, which is beyond the scope of this
study.

5. Summary
This study employs an interpretable ML framework (XGBoost‐SHAP analysis) to disentangle aerosol influences
on cloud water, using recent EPCAPE observations near the California coast. The ML model, XGBoost, is
adopted to explore the relationship between cloud‐controlling factors (Nd and keyMFs) and LWP. SHAP analysis
can help isolate the individual contribution of each factor to LWP prediction, revealing that aerosols predomi-
nantly explain the LWP variability compared to each MF in EPCAPE observations. This result is robust, with
aerosol‐induced perturbations to mean LWP exceeding the uncertainty of CCNmeasurements. Following aerosol
effects, dq and RH700 are the top two meteorological contributors to LWP variability. By excluding meteoro-
logical influences, we find a significant negative linear relationship between LWP and Nd in log space, consistent
with the negative regime (right branch) of the inverted‐V relationship reported in previous studies, but in a more
polluted environment. This negative response of LWP to Nd is more likely caused by the causal mechanism of
entrainment drying, rather than by synoptic‐scale meteorology induced covariance between Nd and LWP—
particularly the airmass‐history argument, as discussed in Section 4. The positive regime (left branch) of the
inverted‐V relationship is not observed in EPCAPE mainly because of the limited occurrence of precipitating
cases during the observation period.

We also examine the dependence of LWP sensitivity to Nd on two MFs (dq and LTS), which essentially influence
entrainment drying effects. The sensitivity exhibits a non‐linear response to both factors, strengthening initially
with increasing dq or LTS, then weakening beyond a threshold. For example, higher dq initially enhances
entrainment drying efficiency, amplifying sensitivity, but excessive dq reduces LWP and suppresses radiative‐
cooling‐driven entrainment, thereby diminishing sensitivity. This dynamic reflects a critical interplay between
the direct effects of MFs on entrainment drying and their indirect influence via LWP adjustments. This study
highlights the effectiveness of explainable ML in isolating aerosol effects on cloud properties and demonstrates
its potential for broader application in other field campaigns. Furthermore, our findings uncover the complex
meteorological controls on how aerosols impact clouds, offering valuable insights for improving warm‐cloud
microphysics parameterizations in climate models.
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Data Availability Statement
The EPCAPE observation data can be accessed at ARM user Facility (2024). The ERA5 reanalysis data are
available at Hersbach et al. (2020). The 60‐min ECMWF constrained variational analysis for EPCAPE can be
accessed at Tao and Xie (2024). The R package “splitr” used to calculate backward trajectories is available at
Lannone (2016).
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