AGU PUBLICATIONS

1							
2	Geophysical Research Letters						
3	Supporting Information for						
4	Satellite-based Estimation of Cloud-top Radiative Cooling Rate for Marine Stratocumulus						
5	Youtong Zheng ¹ , Daniel Rosenfeld ² , Yannian Zhu ³ , and Zhanqing Li ¹						
6 7 8	 ¹Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, 20742, USA. ² Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. 						
9	³ Meteorological Institute of Shaanxi Province, Xi'an, China						
10							
11	Contents of this file						
12							
13	1. Text S1 to S3						
14	2. Table S1						
15	3. Figures S1 to S6						
16							
17							
18							
19							
20							
21							
22							
23							

Text S1: Radiative transfer model and the configuration

We use the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model [Ricchiazzi et al., 1998]. The SBDART code ingests sophisticated discrete ordinate radiative transfer calculations and the atmospheric transmission models. It has been widely used in atmospheric researches. We specify the vertical grids with resolutions of 50 m from the surface to 2.25 km, 200 m from 2.25 km to 8 km, and 3 km from 8 km above. The surface type is set to "sea water". The ozone profile is set to default values for the tropical ocean. The input optical depth is uniformly distributed over the altitude range of the cloud layer. The SBDART was run twice for each case: the longwave run (5 ~ 40 μ m) and the shortwave run (0.1 ~ 5 μ m). The inclement of the wavelength range is set to 0.1 µm.

- τU

49 **Text S2:** Influence of H_t on CTRC

To illustrate the H_t influence on CTRC, we take the same example in Figure 1 and vary 50 the satellite derived Ht from 1.0 to 1.5 km by varying the lapse rate from 9.7 to 6.5 K/km. Here, 51 the T_t and SST are fixed, so their effects on CTRC are effectively controlled. Figure S4a-c shows 52 the vertical profiles of temperature, moisture, and simulated heating rate for the six experiments 53 with varied H_t. Figure S4d shows the sensitivity of the CTRC to the H_t. Only weak sensitivity 54 (several W m⁻²) is noted. Although the H_t differs by as large as 0.5 km (quadruples the mean 55 error of satellite Ht retrieval, 0.13 km, as shown in Figure S1a), the radiative cooling values are 56 close to the "ground truth" values marked by the black circles and triangles in Fig. S4d. Such an 57 insensitivity arises from the fixation of T_t. On one hand, due to the fixed T_t, the cloud infrared 58 emission remains unchanged. On the other hand, the water vapor mixing ratio at the cloud top 59 also remains nearly unchanged because it is constrained by the T_t (Fig. S4b). Being most 60 adjacent to the cloud top, the cloud-top moisture dominates the downwelling infrared radiation 61 62 over the moisture loading in higher altitudes, leaving the downwelling infrared radiation vary little under the fixed-T_t condition. 63

There is a slight enhancement of CTRC with increased H_t . This is due to the freetropospheric precipitable water decreasing with increased H_t (Fig. S4b). This mechanism can be used to interpret a potential cancellation of CTRC when the T_t is changed. For example, underestimation in T_t causes underestimation in CTRC via the weakened Planck function. However, a lower T_t gives a higher H_t , enhancing the CTRC and compensating for the underestimated CTRC.

71 **Text S3:** Error propagation analysis

Calculation of CTRC involves complicated radiative transfer equations, so it is not feasible to quantify the uncertainty mathematically. Following *Wood and Bretherton* [2004], we construct "erroneous" input by assigning estimated errors to each input parameter. This gives us "erroneous" CTRC, validating of which against the original CTRC gives us the root-meansquare error (RMSE) and bias for each input parameter. The overall error is calculated assuming random errors in all the input parameters. The result of the error propagation analysis is summarized in Table S1.

Aircraft measurements over the southeast Pacific shows that the satellite retrieved τ and r_e 79 for closed-cell have RMSE of ~ 2 and ~2 µm, respectively [Painemal and Zuidema, 2011; Witte 80 et al., 2018]. At nighttime, because we assign climatological mean values to τ and r_e , we estimate 81 the uncertainties to be 6 and 5 μ m for τ and r_e , respectively, based on their climatological 82 standard deviations from satellite data [Chang et al. 2007]. Note that the dependence of CTRC 83 on τ is nonlinear: the dependence is strong in semi-transparent clouds and it saturates after τ 84 reaches ~ 10 [Zheng et al., 2016]. So the potential error could be much larger than the estimation 85 here for semi-transparent stratocumulus decks. For SST and Tt, we assign an error of 1K 86 87 according to Wood and Bretherton [2004]. Our validation result (Fig. S1c) shows that the RMSE of reanalysis PW_{FA} is ~ 2mm (~ 30% percentage error). Here we use the percentage error, 88 instead of RMSE, to construct the "erroneous" PW_{FA} because some cases have $PW_{FA} < 2 \text{ mm}$ 89 and a minus PWFA makes no physical sense. For the lapse rate of marine boundary layer, we 90 91 assign an error of 1 K/km, which corresponds to 0.1~ 0.2 km error in Ht for typical marine boundary layers. 92

93

94

95

96

Table S1: Propagated bias and RMSE in $\Delta_{CT}F$ and $\Delta_{BL}F$ for estimated errors (second column) in 102 each input parameter. The overall errors in bias and RMSE (last row) are calculated assuming 103 random errors in all input parameters. The first and second value in the parenthesis of the last 104 row represents the daytime and nighttime, respectively.

Input parameter		Error	ΔctF (W m ⁻²)		∆BLF (₩ m ⁻²)	
			Bias	RMSE	Bias	RMSE
τ	Daytime	±2	0.9	4.0	-1.4	4.3
	Nighttime	±6	5.3	11.6	0.0	4.5
r _e	Daytime	$\pm 2 \ \mu m$	0.3	1.9	-1.7	3.8
	Nighttime	$\pm 5 \ \mu m$	1.1	3.5	-2.3	3.9
SST		±1 K	0.1	4.5	-2.2	5.1
Tt		±1 K	0.0	4.4	-2.1	5.5
PWFA		±2 mm (± 30%)	-0.5	6.9	-2.4	7.6
Lapse rate		±1 K/km	-0.5	4.5	-2.7	5.7
Overall error (W m ⁻²)			0.5	5.7	-2.0	5.5
			(0.4/0.7)	(4.2/6.7)	(-1.7/-2.3)	(4.8/6.0)

Figure S1: Comparison between the sonde-derived z_i and the KAZR-derived H_t. The H_t
 represents the three-hour average of the KAZR-measured cloud top heights. We use thresholds
 of signal-to-noise ratio of -13 and reflectivity of -40 dBZ to identify the cloudy pixels.

- . . .

149Figure S3: Sensitivity of the $\Delta_{CT}F_{LW}$ and $-\Delta_{CT}F_{SW}$ to the depth of the inversion capping the150boundary layer for the composite mean case. Increase in inversion depth can increase the water151vapor loading in the inversion layer, thus weakening the $\Delta_{CT}F_{LW}$ slightly. The more humid152inversion-layer air absorbs additional shortwave radiation, increasing the $-\Delta_{CT}F_{SW}$ by just several153W m⁻².154155156

160Figure S4: Vertical profiles of temperature (a), water vapor mixing ratio (b), and simulated161longwave (solid) and shortwave (dotted) heating rate (c) for the six experiments with varied Ht.162(d) Dependence of the $\Delta_{CT}F$ (filled circle) and $\Delta_{BL}F$ (filled upward triangle) with the Ht. The163black symbols show the radiosonde-based estimations.164

Figure S5: Variations of the $\Delta_{CT}F$ sensitivity to the three most influential input parameters with the solar zenith angle. In the y-axis, the *a* in the parenthesis refers to the input parameters and the superscript "+" and "-" refer to the 75th and 25th percentiles of the composite of each input parameter.

185Figure S6: Same to Figure 3, but use NCEP/NCAR reanalysis instead of ECMWF.186187188189190191192193194195

199	Reference:
200	Chang, F. L., & Coakley Jr, J. A. (2007), Relationships between marine stratus cloud
201	optical depth and temperature: Inferences from AVHRR observations. Journal of
202	<i>Climate</i> , <i>20</i> (10), 2022-2036.
203	
204	Painemal, D., and P. Zuidema (2011), Assessment of MODIS cloud effective radius and
205	optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements,
206	Journal of Geophysical Research: Atmospheres, 116(D24).
207	
208	Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998), SBDART: A research and
209	teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere, <i>B Am</i>
210	<i>Meteorol Soc</i> , /9(10), 2101-2114.
211	Witte, M. K., Yuan, T., Chuang, P. Y., Platnick, S., Mever, K. G., Wind, G., & Jonsson, H.
212	H. (2018), MODIS retrievals of cloud effective radius in marine stratocumulus exhibit no
213	significant bias. Geophysical Research Letters, 45(19), 10-656.
214	Wood, R., & Bretherton, C. S. (2004), Boundary layer depth, entrainment, and decoupling
215	in the cloud-capped subtropical and tropical marine boundary layer. Journal of Climate, 17(18),
216	3576-3588.
217	Zheng, Y., Rosenfeld, D., & Li, Z. (2016). Quantifying cloud base updraft speeds of marine

Zheng, Y., Rosenfeld, D., & Li, Z. (2016). Quantifying cloud base updraft speeds of marine
stratocumulus from cloud top radiative cooling. *Geophysical Research Letters*, 43(21), 11-407.